Filtrar
64 Questões de concurso encontradas
Página 1 de 13
Questões por página:
Supondo que [X1, X2, ..., Xn] seja uma amostra aleatória da variável aleatória X com distribuição Poisson
com parâmetro θ, ou seja, P(θ), é correto afirmar que
Seja a amostra aleatória de tamanho pequeno [X1, X2, ..., X10] de uma variável aleatória X com distribuição de probabilidade normal com média μ e variância σ2, então, as estatísticas x̄–μ/σ/√10, x̄–μ/s/√10, x̄–μ/σ e x̄–μ/s têm quais distribuições, respectivamente?
Em uma amostra aleatória com n = 25, observações da variável aleatória X que representam uma característica quantitativa foram obtidas por um estatístico que precisa estimar a média μ e o desvio-padrão σ da população (distribuição) de onde a amostra foi tomada por intervalo de nível 95% deconfiança. A análise dos dados forneceu os seguintes resultados: média amostral x̄ = 21,980 e desvio-padrão amostral s = 2,11877. O teste de Shapiro-Wilk, para verificar a Normalidade dos dados, resultou em W = 0,972867 e valor-p p = 0,721053; o escore t24,0,975 = 2,0639 e os escores X224;0,975 = 39,3641 e X224;0,025 = 12,4012.
Então, é correto afirmar que os intervalos de confiança para a média μ e o desvio-padrão σ são, respectivamente,
O estatístico de uma Vara Federal necessita verificar se a idade média dos condenados por prevaricação e a dos condenados por corrupção passiva são iguais. Para isso tomou amostras aleatórias de tamanhos: n1 = 15 de condenados por prevaricação e n2 = 20 condenados por corrupção passiva. As amostras forneceram as estatísticas: média amostral x̄1 = 25 anos e desvio-padrão amostral s1 = 2 anos do grupo da prevaricação e x̄2 = 31 anos e desvio-padrão amostral s2 = 3,5 anos do grupo da corrupção passiva. Verificou-se, aplicando os testes, que as amostras eram provenientes de distribuição normal, mas com variâncias desconhecidas e diferentes. Então, foi aplicado o teste adequado à situação e obteve-se, para a estatística do teste, o valor
Seja a amostra aleatória de variável aleatória X que tem distribuição normal com média μ e variância σ2, N(μ, σ2), [x1, x2, ..., xn], então, é correto afirmar que a Variância e o Erro Quadrático Médio do estimador de Máxima Verossimilhança (EMV) do parâmetro σ2 são, respectivamente,