Questões de Concurso
Filtrar
1.802 Questões de concurso encontradas
Página 134 de 361
Questões por página:
Questões por página:
Concurso:
MPE-AL
Disciplina:
Noções de Informática
A planilha MS Excel 2010, em Língua Portuguesa, na figura a seguir está sendo exibida com a opção Fórmulas, Mostrar Fórmulas ligada.
![Imagem associada para resolução da questão](/acervo/questoes/17501-20000/17590_71638180226.png)
Se a célula em B1 for copiada (Ctrl + C) e colada (Ctrl + V) na célula B2, o valor da célula B3 será
![Imagem associada para resolução da questão](/acervo/questoes/17501-20000/17590_71638180226.png)
Se a célula em B1 for copiada (Ctrl + C) e colada (Ctrl + V) na célula B2, o valor da célula B3 será
Concurso:
MPE-AL
Disciplina:
Noções de Informática
O arquivo de texto a seguir for importado para o MS Excel 2010 em Língua Portuguesa, usando a sequência de comandos Dados, Obter Dados Externos de Texto. O caractere de ponto e vírgula foi usado como delimitador de dados e os dados importados foram colocados na célula =$A$1 de uma planilha em branco.
![Imagem associada para resolução da questão](data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAXUAAAA5CAYAAADJELtrAAAgAElEQVR4Ae1dCVhUVf9+MTXRFAUrF9JU1LLPvTS3MqNEcwEVPwU+UgFNDQ0srcxmXHChFEEz2dQEwQ0s3FJQERfcQME+YzMXkEwZCJCZcDv/59yZu83cGWYE/1/B5Xn0nuV3fuc977nn3HvPPfNeK0IIST+RhKu3S8D+tX7ldQzu3oGNmnW8eOECer/+ulm2lhjdV13DT0cvMEVatOsGx/6vccXPHN6OhH3ZmBOiQCsutWYDtP7csmZ4rYNdzTqujrf7Jdj3UxI0Ah/P2b2Kd4f9Cw0FaTSYlZEM/ynzsfTAAfRt3VIvVzp6NmkXCsrt4OQyDE1Yk/JC7Dl8Gg9tXoKrY382FdfOHcKeq4D/5OFcmtmB3L2wmrwD5EK02UWqZfgEvM3euRsjOrdDPTMq/n/jjWL5/+bu4T3s23PQonPOEu5wvwL7fjog8s9S3r7bIPR7rQ0bfYLjfRzZFYUjufWw/MupT1D+6Rep0XmGTuplWYeJuyKBBpm/C4eCycdfbWajZh19nZxJjlmWT2BUWUSmzFxIFsz0JvlqcfmnWi8hRJUaIeJGXPv/Nubk7M4BUOenkZmLl3NxGohbvphEpGQwaYFzJpAEczsoJ4H06dOPBAgKJK71Im/06SPykZWyk8xeECaq858QsYS349sU5B13hXnNMpO3k9GKfyRvlISnxh3DcBZxdvIVcV1z4y/HwLeoov9xpObaSUh9eg2yqveM6FLU9/05+DXlQ0RfGg2PXto71OzTe3HgcBrKn7HFRM8peKV9M20ZVTaU62JxNi8LUCphS1NbtINy7jTOZ0XRTRzdswdpt0rQ1sERPh6DuTw2oCnIRvjmHXjHzRfdO7Vgk5nj75mp6DziQ7hiF3Yl5cJvdGdR/uOyEsTujEJ2QTH6DnbGaMdeovxT0WFIzCsEbGzg7OqJXva6u24ddtg4QDF3MjKOxiIhtRjuXj7o1MYayfFhOHhgPzLzmkCpTNP6bNMDyunjAJQgQhmMcof+8PMYgWuXTuKHH5PQc+hkuAztytjS8smZhRg6xht9297Hju3b8Ezr4Zg6sR+HzyivnIV5AWv7Puicr8DRAmCYvbZM/H8vIfqLr5mI+/TPUM50jtjf2dgInFPbwdfLRZTxwgA3FMRvBEavBqBB1OmGcB/wgsimqEiDlo1uITz6pKhP03+Oxd4z2Wim4+ZgdBDO5pXBof9oeIzow/jQppUCHJ9a19FBSqjbD4Wt6jL+6tAHHoO6ITL8Ozi8ORlv9+vE1a+6dApbf0xEKWzw3lh3DOotxsYZVhGoire33ObCr1GGgZcn5U1TkI7EXDC8JWerMLQr/wRIz5fTJS3hNbgNvo/9mamzhe1L8PTxQgtrHoIx7grSk7HpwGm81q07NM1s/7bc0bG+NeEMZsz6kG8UEzJ8HrLtPBjj/+LNjI5lAOTxI5w+GovEk3lo0cIWjoN64prmRYwa8grnIPtUEmITT8L2pZ7w8XKBgFYYm6fMPSeNYtPNMyPHjsWBn36Cfp+anme00B/fK0fy9s1IKSiGbduBmDrZEU2fM+SLsaYXqPKcIwZ3o/lH1hDvNUeY61d+2jGyfe9polYTUnb7Ohkz3NWiO+aYiA0kL6+Y8XV8w5fEa22iwXUxQeFOaL84+UYY5MWFb9TWp84nPjMDRPm+Tv2Iq7szOZ5eRAhRkyObFpPZi6I5m+hFM8iy7ccIvcEvL7tNVi+aSlLSb3H5NODr40Y2L/YnUcfPkful18lXAd9x+aavoOI7CylbmjZtxifks2Wh5G5ZKTm5TUESMrSPG+bwygGRCAjvmgipIFMnThL1y8F1y8hnq0LI2ct5pFKiPCE5pC9AgJdIqkpgkJPA9EPiWn8SdbGI5CeGEt/Q0yTC14m7U6fYj6VmM4UM+1RNFs12IXFp+Ux+VloYcfZYwfSBoBYm6D6df9pgElSppG0zB7L9zFUSt2wqGTUzkOTc/ZMsGDuMXKRdTAhJi9tAQmJPaCOEkONbV5MNcWlcvKqAJbzpPRjqXD85byy2nAQFUQiehNh0p34OxH9xGCl78Ij5d/e/x4nLDPETGGtrwB0hJNzXiXwStOtvzB0h2rFuJz7nmEbxd9MJCg8SqxsnbHulxnL0gSxddiVRfjmV7D5+homX3/mVLPLoJ5jXcsi7zdqSwI3Hmfzrx7eTCfOXsa6Zo/489f3+TG2+GeekaWyEpEYoyKgZCqN9KjV3cODU+STAfwnJuVvGJJXdzSFKX6VorHO2hBDQiNSkbqqSHxUe3OBmnZm/DJJDvNyVbDHuqM7PIsFLFpNM3eTPZRBCvg/eyEXX+k/hBjdN9HXqxkw8nAEhZLXXByQhR01I0WkyzXeDMIuZ+Fet4CdtxofrEJKWpZsx9KxN8UAnReHjopQtTRszfY2eV+moFK+MZVE2IfSf3p9Tv+5EoVAQhWIB+XTmTJKUKb5YUfOyP34jO8PWktkf+xKpJp6JCSchEfFiz7pJnRRdJNP8viELPScyJ5BwUtcrINGnRcTf2Z2ERISQCZ6fEGl2CTGYmFSpxFm33MFMfBGpTFVc3ep8MtJ1jrh6Qsgc15GGJ3lZYbV5+3ieL1kTcdCgvuryZnxSdzTgio4t7eVRDMOAO0KYC++FQkKqzR2tKmefuEK6/GLBOWeMOzrWN363xcA3HU/vOPRjzunJb3cnEcI7DSNjeewHUxg/hef3MjceQqd0SfLgMXbSF49VameMV62PHPJ98E5tsKpzsgps1Amd1CMTf9X6k6hbau5gjX8M8CGhp8UjqOh0KPEJ+JE1ER2Z5Rfu2UQvYGujfU2WcSgGsUdSgMat0AgNkX/6Cpzd9YyNRTUqBCkVuNmkEWweP4eGDSuhwrMG1tb2XTFnkXapQJypQfblZCiVv2uTH1QiNi4VvaYP0Jk5oL9uiYgtN3DA6/g5qwCDnr+C85kpUCr/YLOYY+fX9JZ/mr+CPoLHYJFxDUR692Oxip1Vi1fqii5dKJUo/+NXLJu3Fi1aiJetqEnTFzrA1Wcuhv2yD4u3HkWI3zARiP6TvcG/9hRlAXa90PvZxbj0wmjYC59TAVDs0cnn0OTZ5kb61A5fKpzQsfd8xF28DH6RQa8OS6MFF4FW/zIo9a9WwMUCwF68MmdgxyRYwJsrAJ/Ro6HychK14Ul5kwYkSG3zoqgeNkf4UpxNs/j4N+GOjvUZs7RLlPptsHHoz5zT2ck9gc78emFxrvRY7vX6AOblauG1AvTsMVDkji6tOemWIkUZggjHq8Q81eA57VKhwFwyWBU2dug0bWEjKs/VLUo1jGReuY33PhKPILuuPXD7u0QAYw0KGJ3UTx1Nw3uuboAmF19FnsHenRu5wnuVV7hwVYG9QXPQxDkEQQNYULmY4bHNoFjg1AFYcKgCWZczIZxfVZfi0P/fizHJsYuujAYfTv0C4Cb1PJy9pEJnwcSemXEFfX3tYWvbF23bX2NOEoMK/9cJlvBqx7ZdGnTTF1/FqvBFmDUvEBs2KLRGxecxzj8Z8Vs+Y+Kq23fQwWGIyIEmbz9e6jYW7y/eiZgv6HsCw7+PV+wxTOSwh+jyDPuUrh27f34IaTeTsXauN2xDYtBH/8pg6LnqFPvewO1vDOx+uQ2M0B/ATVsDoP+k/8zhDVChFM1EE+0T8yYN4/8v1RLuKKrOHxjF9qTcUYd0rCdUDsLJmG+N+u86VPyOx7az6bHcpoM9fkjPBt6UvoEyWpEuQ2qeCgu5VFUxJr8qbGY5MWHUo1srZGar8CY3hwKq7Ey06tZDshSz0k5fMAj/0g9tRHoLR4zuTK8x1mh67zpu3i1jTC4kRiJ4e4LQnAl3atsAqcm/MeH0M0exJzmbCVs3sUbhL5lMuLyoAKsXfIxcJib4T1OAHfFn4LVgjWhCx+OH2LnpLPr0F05qjfBe2/v4+YZa5+A5JHzrjZSLKuaFXkpUIK42H6vFbtcLAW81wMLVm3D3XgWTf+nwFqzdEi+o3HTQ2r49itPPoKz8ETQaDY7si+HaBnRGx1aluPlHGSqKb+DbQMOLlXHv5vFqvLxejrU9vAcRfLudv+DeOrUds/38oVQuxqbkYnyk94I5aeceqFoOQOAnehO63vmgVxN3ThSVqSHVp2U30jBp1kIEb4uCw0tdsD58JRbPcUM27aJq/D16TKu2x9JJrbEqNFm3/U2D5NBVsJ+81OBpwqyqquBt3seLMW3xKpGrJ+dN5MYg8ujBfSbt/kPaUO0fefSADVbr+HfhDrqx7uGh/5KUNo9vt0FjjYzlqZ8sZ86D1q+/jyZnNyA6RftSW6MpRHTwIsxfv0vnSuv7wSP66g5geWVrlJqndGsDBlCECQyvVWCj9o8f3sdDvbqFfkzNM2P9vsaNqJX4pVC77byk8BcERt/A136Gd+nUpxVdjNm/LQzncwu5Ol4fPAajHPlHj/Kbv2Lznl0oLmmKwc6usC87j+1HMzB0sq/g7b0G+yPDcT6/GB17vg/3sQPwTD0rxuepvWFITCtEC/s34DqhLw5uiEB+y266XSR0y20QXvdPwW+5e0R3RNnJe7AjOQOPBbtpuDf/sIGNTSkqNC9hxsfjkGRi9wu/UwKgbRs5rDfq1bNCQfrPiEg4w7WbBujjH93NIvwrvHoOO6IOMDst+g4fhZH9Hbi2aQqvIjxyG6xe7gr3dzojJCIBY7wXoI89EB20CnmlQk/Q5WkfyMzjVVyeiWkKEbQqDKzryb5K3cVQg8jla9Bp/Edcv9CJYtTEaTi4x3AvuHtfG3TwO45lHsLdQtpdPQW0IhsHKP08mJ0+YcpgMGdI865QfjIZFHvojl1o0KKvQZ/S3QK03SyXXJ/pdrqospOxLjbZoGGuH/ri4o/rkFf2DN4cPRVvNMlj7Cif+OVHJJwpx1zldNBFJr5PbfDeZE8MEj7eGXjWJfwNeIsPUyKTH2oMMLo7amgfe3B59n2g9B7D5OnvJDLGHfXhgDxEJCSj8xvvwcnhQc1yd78EQcuDq33OsWO9IHcPmgr7SVOCoFW8f6AN19dCM77ftWN5xLDe3Fh8/OghThyOwrGzN7Q73UZ5oqeDHays+HO6TY+hmD5uKJJi1+Jk9p/MOb7Az4PZBaM/T8WtD0d311koOGDpOSnGxvWZXQcofT+Efp+y7TM1z4h2v7z0FqZ+OBRN65vY/SJaZf8fRLKOHZR8yfc/gFIrq3Rx19thwrRSTTaFxEjuSKmVJDxBo6R5q5R5M4NLae4Ikce6GeRV04S5U2evFPJRZkBmQGZAZuCfzYCR+/d/dqNk9DIDMgMyA3WVAXlSr6s9L7dbZkBmoFYyIE/qtbJb5UbJDMgM1FUGnsqkfvPy6WpvX6urHSK3W2ZAZkBmoDoMPKOkP0mkf5oSRH6/GvvPXMLLnbqheRPDX31Ss9MJEdh9/g8M6GH8p3sb1m7AkNGOaCxAdvzgZmzZ9hMKHjZAj47tBDna4NVz+xASHiOZT8hjZJw+gqyihni5tU5ITOChpPAqNq4OQVJGHl7u1AXNm+gL0AqMJYKnkqKxaWs8Cu7XQ49O7Q0sjsZG4oe4BBQ8bI4eHS0T+a0KO1uZObyytsKjudifsXsZ7V9sLixqOkxFiALXIzk5mftHBbpaN2vAlbudl4ZvQ8Ik+4wzMhEwhb26fUp5P3joODo7vGwcgSoby9dsQJOO/UTtMl5Am1N+9wZCI9bhYGo6HDr/C80ai8dKdbEztaiyAY3KKD5T46Uq/HJ+LWdAu3umjMx3cyNZd0pJZdkNMtttpqGOBjUsukhmKj8T6Z0Y7r4pIn5+i0TJwTNcSMiuo0zasSilSHCLJmYdCCbz12xn8lN3BBBl2Em+vPoWUUzyJN7ObxOFTgeEzyREnX+KzJy/gpSVPySld24axy4sJAifDPMnH6+LJ/cfPiJ5l5PJpp1isbEw5Szyc9p1psSxH5aLsQn8SAUv7Aol81zcjGLnypjFK2fNBSzBvm7pSuk+5bzpBVj9F71kPlpEApeuZKIGfcYbGQ2Zwl7dPmV5H+bkZrR+mhEV+Cn53MtFrDFisgQhpLKIeLqMIWn5RUStLiY7Q1eLNHWqi52tnmIzhs/keGEdyMc6ywAj6FV4Pk6knU3FYuaECiZWHT1r/WeSi0WGwjhC9i5GBRBO3Yxm5B8h7vPEyovzXVwI1dvS/qnJTJ+Zov3Sc6Z4GogaCQWK2JL0uH2+i0jNLSNWQRSxWg1xoZ2xsIuzi6ju2IBlPDZ1BnFxmS8qSu0t/TOGnfVjDq+srfBoCfbrJ3daxAupYlLPSQggcecLOThSfcZlSgSksBfqpCSr26dsdcGBYkVPNp0e1fknycyFUeQnhbtFkzrlcb7w/FJnkCUB/LcIagI7i00an3njRdhWOVy3GGDW1H+9fB1v9uaXU6hYzPWUI6JnFE1BEm5aD4RAYkWUr41o8M2mOIwZ0p3Psx+G6G+9+Dg0yCmqD1tW5aY4A6Wkk0jXuHvTIpw20BIQuBAEu3bvhrIKVjIAuPFbORxeaSuwoEEVvF6xR8t2b6GgKhWd0jTsS2V+TwlYt0WrNvxyA/2Jc4Nm3fR8Vy9aFa+XolfArv4zWLD+aNUVmcB+9w+NBC+mXZbfu4uwoCBGO+fUJR0nuiIpiZfQpQOvqyLVZ5ZiT8vR6giY16emsVeVGxYUgbl+HtD+5tnQ2hLs+37mZTNqAjuLTRJfNceLYUvllNrGgE7QqwkaCxfAbe3QSk+HYW1QPPyWbaDf0TLKQUFSFNQD/dBG9PtfsXn4vEl454tAkRxAE2vxWu+LtoZqg2IvfKyXxzIkzpqKr07+C81JBe7UH4xA01cevjCAeSM7YP76PVgzcyxStnyLXZfL0b0LncCoOpQdlnr3x2SfhejarSXKzv6CL76LFJWvbsQcXo3VYQl2q3uNoBjHiqoZ8yhIt+0C14HlcHV3gU2Dh9gesAhXKj6FzyBWNas5nhUsJVvSZ7QWKeyT7hQznFe3TwWtkAyqsuOhaufOSCvkSFoYT2z/xjDcXj0N6YM3oUO9P7FycSTK/+JVQqqLXYiNopDCV53xYrxlck5tYUA3qVdATW92WaVLjQZU/or9U12KRlG7cVUKJgV+GwbFNu33RNmywmP4vLFQDVLg8xFi2c0KzZ9CM1Ro1Py3MUU5hpGCpGBkd3VHxFxHRjRnhaczkgqc4ChSBLRDZFYBpKbjQT6rgaRoBCxdAofBzlB4qhHPveLVYMHyKHzzw06m7UVXtuOjBeuwO8LXEMgTpJjDay+PL6Dy+ELSuyXY44KWIKlAo8eLpFttol1XzPXm+8lt/jSM9dgAn0HLdYX+RGUlgOe0Uak+sxR79rPaF9zm9akJ7FVkBQXvxUerN5u0Moq9oR3Wh4Zgc8wG7EdrzFoWgNzpnpyv6mI3B1t1xgsHVA7UWgaYSb2ZTX3kFWvAzdqqIty35T/0uvW7HShp2hNK5UkAxcjKO489P6fDxYkX/aIT1FX7/xhZntEgfJ4zVINW4PNxfBmGVWs74OEdEcG/FzfEm+wFRpRjGDmUcApu8+cyGfXqN8TEyf2w7VAGHL3e5I01hVi3JhLPvjqEEfPhM7ShQY4eGOSoDa/x/gp9FyzQRoozoLHpz9HSstskNFJRsa+amdTN4fXykZ2IO3EFvGiXGL252Ae+9SpC9XkRuzIds7ZGY8Jq2gEvtGqA0nv3ATvtRCzVZ5Zif2vplwwGs/rUNFrjuQVHsf/MH6i/SrvpKyc5ExUFoRjX8wvRJ+NMYW/6fHvMmbuIqYMun/3V+A2uvmph18NGnRrgq+Z44YDKgdrLAH2FUFmUxbw0Yl8nsJ8xY+Pio/SL0oXO9KPE3NtPQRE1WeHhTMJMfG5M+6JQV0Sdz3xkWuCACRp72Xg6dCHZl13KmV+MWmfwJaSchDUEaGaQzhWigcePSNapCDJD8Ck8QorIV/OEX2lSk08/DRQVoxHvIc3IsCniHT9CI2PYhTb6X1Fi89z6NCMOzgvZqPTRDOzXUg4atJ9+spCqkEp9XvDw/l2ksPQBV19W9HKRHX2ZFx6bos030mdPit2cPjWFnQVt6kUpa0M/rSb6wo4uwyzs6iLiP8OdpAm+hl5T2E3hM2e8sOXlY91jgBP0St8TioT0PDxq1AgvtRqE6V5OBlcyrYRkPHZsu4Dl4Zu5DyzTu5XhvslI2bPMoMzRoBn4JLkc43rzmujJ8QexLvksurN345oCBH29AqVNnsfjexVw/+Ibga56CYKVwbiak4zMCgcM7W0PVj5TW5kGMSEbkHezFOoWjWDXuhM+m/ZvEY7l7n2xnUxAZozhMsb+9YtxvoigWXsb2DzsCy+ft0RlqTzvlh2X8dC6Avce/wW36Qrxxx5UqWjTciC+3p+Jj0YKXhADoNLBsckZKDaKXVuVUV5z96JVlxnYnHUZ4ySkZS3BXu/F9vh65lRR28LmOGHG7grkXz3BPY2wBiV5Z/DtugQ826A+yhqpUFavN4KXeIteaO+LDMSFfLVEn9Fvq1QHe9V9ago7y/vZ0yfQf6D2wyBSTzpU6nZ3TDwqHHywJcKXkfSl7TeF/f7tXCxbG4l6LzaD7f2WGD55Erq2E/52onrYWf4pNvonhY++sDc+XlgP8rHOMlAT17EIfy+Du8Ca8FszPtRkWIcu5JTgbqpm/Gq9ME8BrQeTIukvO1erqiNrFpAP5kdWy4epwvRuVOou3VQZc/Nk7MaZepq8G69VzqkrDHB36nX2qlbNhkfOnYCczrOw6mPxtz+r6fbpFy++jN69ZmNvdorBXfrTr7yaNcjYq0mgXLw2MyBP6rW5d+W2yQzIDNQ5Bp6KoFedY1FusMyAzIDMwN+EAXlS/5t0hAxDZkBmQGagJhh4KpO6LL1bE10j+5AZkBmQGbCcAd0vSnXSu+HfoZA0g6fbVLR/Xvxb/7I7N7AldiuKS57Df6ZPQac2xn/Kvy1mL6avGChCQ6V36Ve+HQa/Bw/HQaI8GqFSolEHLkjma+Vrj+JP61eYr67rF6ZSp1vConCvhT083Sah/fO6nznqGxqJUwnYxJN5cBg4DB7v81saua+AC8vZOEDp5yFMMRmmMq2bY7ai+PFz8P6PN+xbCnil8rbrYkXlx3gvEG+ZFOUaRoxhZy2pbHBKdj7eHT8FQ7qbkKFlC7BHM7BR6d2N0Xsl+4x1Y+poDDvdzpdZKC45dIy3ZN+LrQQxTQnWfbceLXoNs/h8E3iRDJrsUwDVOR+T48OQrNd4G4f+8POgP3rj/0yNF95KDtVJBrTbfExL716MW0n8F4eSO+X3SPmd68Tfw4UczCoyskOo9kjvGv5oSE08pvgZabdEsjrfpExrVUqIEh5FSabka6mhUDb4nyS96+7sJGpnSuiXJPS0sfNNZKqLFDFS0rdKK4iULHC1pGufsvSuwt2ZpKqk2sSnVQs/70YO1VIGLJLeZTlQpUYQ3zVH2KjoWKukd0UtI0Sdk0D8lu/TSzUepTLApmRaqzupS8nXcj/q1ZMN/idJ7+ozunTWDIu04KkscEBCDudGLAtcPenapy29W/WkXj38HClyoNYyYLb0LvsY87D8DwSs2IehI3uySYJjLZPeFbSMBpN2JeOdCdXbjy6UaaU+Tcnb0nxLJGBRS6R3RbRrCnCTtLNoLz2VBRZKSYtkgc2UrrWEd2Gf1oT0btqJQ4zcMf0oWUhELMrvPeIpMRM/X0AO1TUGzJbepcQkx4di194DuNtqKEZI/Gy99knvik+HvdeKENyZFYIX50nFeoz1xmr32UZlWlGlvK2UVz5NSr7WmGzwP0l6l28hUJC6C7ZDRgqTzAg3F0lJ68sCV0e69mlL7w4dNwJWnRzw9tjhTDtV2afw0fxliNig4CQaqoPfDPJkk386A/QZ5Mim1eRIvuBpRJ1B3N0VggRBkIpH6Yk7sbm+w/uSiyaWPsP8x5AV+sJeqlTi5v0t64I5xs53IYKnZybNcH1bWyQ/cS33U/dHDyrJsskjSKKFkgAnE6OIQqEgUYkXidEvJxWdJlN8Q0U4zYmU3blOgtcuIUvWhpPrd8qJyS8nqTPImHFfmOOWszGOXU28XF25ZYvdaxZbzAtXCQ3oYYvwdSWXBX0t1Wei8hIRfew7T2o/Gyg0DfWdQixaTieEUGzC81mEzczzTYhBP2yqT2vifNSvL2bBBP7rXjWAX9+/HK9dDDDLL1R69w6V3mX/9KR32WTmaFUPXd0nQCX42gtNr1p6d7hWS91M6d2WrNiXqHLDCCN1Ol6rm8tK7548lCE2pNK7AUsRFp8sTtfFqHwtfdT1cOyFpKQL6NuX/woUWyA17kcMmDyejZp9ZGVaF831xguVZ0QyrQZO9ORtaT6VgKXYsrUfBTIoYhS7nmwwld414MXAm4kEPWyc9K6uCJXe1e8zS7F36Mh/SUnrVoPU8qYYYMG3PWg5ik14PouwGZGutQS7qT4163w0QbNUVuNGjfhkM/HzBeRQXWOAmdR7vD0cKTvjuLYnxe3HmGn8BLZ3dyxKy/h1vez43bBzGsPZ00DQ4iB8tGC6KE0b0WDlf9wAKS11amDdGf1sy3GJnbQ0Bchs4GD2QO72ry7QqMu4eitKW8JBb1LOTdqBOV99i8YdxSqKXCEaII+RfToSOW0mY7TEEsuRjFKMNPJFJZ+3bPDu1K9F7gwiGhW+WrYFy1Z9wmUlHtiN38secvHsbbvR5G2dsLsudeV8H2zLeChQreTM+YAUdtvO6Ghzj7OpVDc14KXgaBCsrKzgHZzE2bGBqrA5es7Cr6lnteZG+sxS7K+31mqzsxg0uUlo0UW7DMGmsUdT2Ck27nzWx2bm+WYWdok+Ned8NIZdU5CO+FPZeEwFkdk/jQo7zlRiMHtOmomfLS4f6x4DnPaLKendwrwz2BSZgHqkIUrqV+Bhva5YLpBhrc3Su9pTogT+c8OxJni+4RliQnpXk3cWKyL2GJVprUre1pQELAVSe6V3tTQfWw9FidQAAAxLSURBVL8U94Z/KnmRNSW9S0sz5/PF63isfqgn5Ux/k2FautYU709XeleDn9atw7mcCjSw0349NfuPm5jy0TIM78l/tKYq/IYnqZxSpxioidUkWXpXlt7VP49k6V19Rvi4LL3LcyGHap4B7k69Tl3JarCxsvRuDZJpritZetdcpmS7OsiAPKnXwU6XmywzIDNQexl4KoJetZcuuWUyAzIDMgN/bwbkSf3v3T8yOpkBmQGZAYsYkCd1i+iSjWUGZAZkBv7eDDyVSX1X0BKksvvO/97tl9HJDMgMyAzUKgY4PfX0PeuxI/0mGjYisGr8Bpb4TRQ0VIPvF3yKqw2sYQUNrJsMxJIv3AX54uC5ghK4Cn4FWJD+M5ZsiEUb+w64dScfM+cGoo9QO0ZTgICvl+BBkzZQ/XkbUz8NEmmK/3IwHouCgtDz399A6fWmuDJosDUoENdvPUJ5o3qwtnsNS/xc9WyMR+kPPqYplqNT225o2KIBRo2cxWHL3auET0QBhva25xzsTLmCK0d3cnFTAY9hneHwFs/TnZxTeGHMaign9eCKmeadM5MMmMJOC1DeI2JTgSZW+KuRPVZ+7i3pRzrRPF4LkoLxge8GzNmcCq83zfwZMLNV3DjvLJ68Mz8h/KcMWD37GNm//oWYHSs5/RPWRuqoUWVj86afcLuyFHfzfofLHAXe79NebKopwfoNwcgvqY8HhblwGP8lZn3QVWxjJLYz6BMc/N0KLzZvig72r2OGp/CHeObxZsQ1s4eeHQvURmo80H3qrI1kvlHnckadYIDukqwsyiSe/mHchsnEtf4kSiDikrjWiyyPy+LyqY53QNRFLi4MqPMTydeBsXySOp+4Dp9MOJkQdT4Z7+RJ1LwFWes/hZxk9VrU+WTKzIV8rvoW2flDPMnYoSCKiFQ+XRe6GLVQJLOaECDGblBAL2Ghp5NIr2bzd+s5bEVZx8ixNIEojjqHePus1fNgPBoXGyXKjFkwW6RJQrkyxbuosETEFHZCiojnxJlcW87H/SDqUwl3oiTzeK0k/jMXke0KdxJRlQi4yDshUtgrBTZXDq4nH3+1mdx/8EiQal4w61g8Sb9eqjMuIs6jpnA8aBOLyKcenuTcL4XmORRYlV1LIZ4L+X6lcsybD9/gLMzjjTM3CIjGAs3VHw+EmB4vBh7lhLrGALP8knn8GEZ8yH/Nx3H8B0jYxMsGNOo0Hh+N4+9i+vR/AxcuZ0te9MKUgRgy9gM+T10Bz6+Xgrtxt7ZHJ+ty5LJSM5pcnCt+AYPsdeqH1vbo8SCPX76xbgNXTxdYGxFHzL58Bd1f4bVa2ndsirysW3z9utDZ2Aisi9xjkJ5WZgfhr/9t7/6KJB04u65DRV/byU3ah26jzVcMHDeJ55RWfKL4MYbxN/1I2rrZJO+0jKYgGyFLl+Dy1RKLsENzC48bvMDd2T7/orUkLwZOdQnm8Hr9RDzajZuOxkacWIo98/f7Ok8qBG66iMClU9CgvuUrhF2HuqB3+2Y6X42B0goRwtSwxbD/MABvvKavNcObGcN++7fb6NC/P2do3fkVnNoaw8XN4Y0z1g/ojwWarz8e9G308/V9yvE6xwAzYspKG+JldlKlFNi1RMNi/ntig0eNgPDjdWtX7oDHNLFGCcOc6hLifm8Hxy6CT7bZdcWogZ04YlXZB5HR6A30YCdpjQpNmvKTMjVsbXsfRcVcEZOBMb5f4WzCTjx4+BiPHpTj8HkreI/llze0hXMx280Hc7zn4oye377NVJzuzMPyuzhwKhVpabmSde4+8F+MchRjlTSUSKQ/PbdqJ9YxuXPb2iTv1E1SxFLM/VqB+cHxBl5NYrfuAadBTXDuShFT7lLOXxK8GLjkEszh9US2BnMdBVcprrQ2YCn2a7/9zhTUZCbCZsC/obp0ihEzi4w9refZvOiuTcGYNHYCJixZyl3caMmEVDXc3rRBbEQIlMogXC1k7zB4v8awt+rYCtfO6jRvAFw5dAI7L5zjCprDG2esH5AYC9RENB4kbET5+j7leJ1jgFtTF7Xc2hpNRAl8JHzeWFhNUGCccE1clx0dFIjxfoG8sV6IfvPT5/MYRMRE6eWIo02sjd37ie1ozNq6CTQ3ziJg3S00fXgfOffuS9zVd8Z3MeE4p7aD/rLvwoAATJs/gVlT/+N2GYaNcUR2hdqwIqiQ9ddzYHWVJAxMJqUfO4Ke7y4yaUOB6/Pu6L0Iwc90wTtu4wzKVoW9bTMr7PgxCgcOAZrf/sDgqQYujCZUyaumAOWiqdLQlaXYUam9Uy+4kYWyS79hTWEfLFYsQmneMazcuBOffyR8z2NYn36K67SZaFZZhpi9KXAfyj9p5v+ZjQ0zJsHxs1BMnPQsoiJXo3T8PNF7HGPYm748BB/YxWHq/DTY1rOGTatecOrKPmGYez7qIzUdr2o8VJVv2rucW+sYoOtNRzYFiPXLValkjPtivaUoNZHUQ2et1Plk5BBnvbVLNpOQoqyDxMXZg9P35nJUqcRZT7s93HekGA8hxJieekKAm+j7lSdD55I1+mLsXGVVBw6vmUPWCMW4dUWKToeSuaEnq3ZgxGLuFE/+vYLOJsLXSdxOSd6NOJRIFmFX55BRrr6c1a+Jmy3ipSpe6XuX5LwSxn/CE6ypc8B0AYp9r06gPf/IGtJmsJfoXFLM8jPgT9+HsXiorytJ4L7zR4jPkGZkbaLgXUlOAvENOmqseBXpRWTEKB/OpireOEOpgMRYoGai8SBhI8qX8iun1SkGmOWXV7u/gv9eyeIuWKrsTLz81rtcHNAg5KOx0AxS4HN9PXSdVVKYEr2n819nERRGQXo85n6+DSExUYafJbPtibaNfofwAfhyeUsMNHOVo6LUDj0ETw3tHdqjtELoDdDk7UfLhvXhtsJwCUOIE1Ah+vAtuA4wXFI4/FMmxowcJDbXxQ5GB2Hjtn2SeUyiJhcVDfrw7xV0lm+9N6QK3oHAqQNg1aaHUT11vlJ97Bo4tOKXoZ5v1dKQl4J0Znkj+mA670YXqorX+i91xbGotUz52ORMJESEokRMu8XYB3TRvnmxH+CKXs01Jp8D6M4fqjMvhd2gMXoJE8e74rFGD6yejbm8X4oOwqtjPuRKV8UbNTSKXWIsUHvReJCwEeVzSORAnWVAewmrJAqfz8jNO6WksuwOWeztL7ijVpMVs51J2AF+90vl7V/JvsR0wdWviAzvO1hQhs/KT4sjLh7+pEiw3eVYXCwpFsSvHIwkgRuPMYUyd6wh30Sn8Q50IWN36vQJYMXqLaSs/BEpL7tNFvt/ZYAjIcCLoLU0vuJi7Q6I8ruXyJLZ88ixLG6fjgjDTJ+ZojgfKSLDW4P4Cnf88JlMKCdhjZG7ZLUJ3rU7H/o0A/dlJz23pCrsWwNnkpO6XUxRGzca8HI61JcAzSR3xZjDK4tH8k5dnU+qg53usPLXnRNpP39P/L+LY6tjjqawb1z5CVkbdphUVhJydFcImfjxOlFZuqPE08WDZN0pJeV3rhP/+d5E1O2msFfeI8VqevKqyYmYMOK/arPItzm8mcIuHAvUsdR4ENpI5YsAyZE6xwAv6KUpRGR4JAqJDbw8fdCmBfsmswRhymDwr0211z+H/mPgMaIPE7kUvRzrVf0QMdfw5Wl28h7EJut9iQg28F7gJ7prv3puJ6IOXEG3d0Zi4tv9BBfZEgQrgyHc+9Gmx1BMHzeUsykpvIotYVG418IeU9wm4qXn2Z0PWhP3vjbo4Hccyzx6cWXYwKnoMCTmFaJN38FwGzYMzzWR2m1RgmNJBXjH0fAjG5rM7WjccwZSrhVgyMuCF8RsBQByTqWgcZ+3RO3lso3yDuTuDcLr/in4LXePwV0+LW8O9qOxkUjJzofj+A8xuHsHrloaWDDuVcST8cjds0yUzkaq4pXaxYcpkcmcHPaYq/TmXqjXBPbzP/+A/WeuoU3HoZjuyfd3ldjJYxRkHEXMjyfRZvB7mDxsIJ6pp9UnZ9t27+4NRG3djD/KbTB5mhe6tuPPGVPY76sK8d26MJTa2GDMyP+gT9eWrEvuWBVvVfHOjgXq0HA8aKthbYzlc2DkQN1joCYuYykJuw3uAmvCb834UJNNITGi9dma8av1Qp8CHJwF++pr0HnWsYMkKfNWDXoUuGLuRqXv0gVWTxyUsRuh7inzbqRWObkOMcDfqde965ncYpkBmQGZgVrHwP8B/TdGDEkYTaQAAAAASUVORK5CYII=)
Após a importação, o resultado da fórmula =SOMA(C:C) com duas casas decimais será
Após a importação, o resultado da fórmula =SOMA(C:C) com duas casas decimais será
Concurso:
MPE-AL
Disciplina:
Noções de Informática
O conteúdo da célula A7, definido pela fórmula mostrada na figura acima, é
Concurso:
MPE-AL
Disciplina:
Noções de Informática
Assinale a opção que indica o botão usado no Excel 2010, em Língua Portuguesa, para mesclar células.
Concurso:
MPE-AL
Disciplina:
Noções de Informática
O usuário queria desenvolver uma macro, mas percebeu que o MS-Excel 2016 do MP de Alagoas não possui, na faixa de opções, a guia de “Desenvolvedor”. O motivo para essa ausência é explicado porque