Filtrar


Questões por página:

Uma população formada por um atributo X referente a 400 trabalhadores de um certo ramo de atividade é dividida em 3 estratos. O quadro abaixo apresenta a composição dos estratos com os respectivos desvios padrões do estrato.


Para o desenvolvimento de um estudo, decide-se tomar uma amostra aleatória de 80 trabalhadores, estratificada, com reposição e com a partilha proporcional aos tamanhos dos estratos. Seja o estimador da média da população em que é a média amostral do estrato i. Assim, a variância de é igual a

Considere que em um país a variável L representa o lucro, em unidades monetárias, de uma empresa em um determinado ano e a variável X ≥ 0 os investimentos realizados pela empresa, em unidades monetárias, no mesmo ano. Um modelo de regressão linear correspondente à equação Li = α + βXi + εi foi adotado pela empresa com o objetivo de se prever L em função de X. Li representa o lucro da empresa no ano i ( i = 1,2,3 ...) e Xi os investimentos da empresa em i. Os parâmetros α e β são desconhecidos e εi é o erro aleatório com as respectivas hipóteses do modelo de regressão linear simples. As estimativas de α e β foram obtidas por meio do método dos mínimos quadrados com base nos primeiros 10 pares de observações ( Xi , Li ).


Dados:



Com base na equação da reta obtida por meio do método dos mínimos quadrados e no quadro de análise de variância considerado para testar a existência de uma relação linear entre L e X, é correto afirmar que

Em uma população correspondente a uma variável aleatória X, normalmente distribuída com variância unitária e média μ, é extraída uma amostra aleatória, com reposição, de tamanho 3, ou seja, (X1, X2, X3). Sabendo que um estimador utilizado para a média μ desta população é E = (2 m2 − 20 m)X1 + (5 m + 9)X2 − (m − 16)X3 (com m sendo um parâmetro real) é não viesado, verifica-se que entre os possíveis estimadores formados por meio de E, o mais eficiente apresenta uma variância igual a
Nos registros dos últimos anos, verifica-se que o número médio de pessoas atendidas em uma repartição pública por dia é igual a 20. Deseja-se testar a hipótese de que o número médio de pessoas atendidas por dia (μ) em outra repartição independente da primeira é o mesmo que o verificado na primeira repartição utilizando o teste t de Student. Foram formuladas então as seguintes hipóteses: H0: μ = 20 (hipótese nula) e H1: μ ≠ 20 (hipótese alternativa). Com base em 16 dias escolhidos aleatoriamente na segunda repartição obteve-se uma média igual a 22 pessoas atendidas por dia com um desvio padrão igual a 5. Se, tanto para a primeira repartição como para a segunda, a distribuição da população formada pelo número de pessoas atendidas é normalmente distribuída e de tamanho infinito, obtém-se que o valor da estatística t calculado para comparação com o t tabelado da distribuição t de Student com os respectivos graus de liberdade apresenta valor de
Em uma grande região de um país, uma empresa (E1) foi contratada para elaborar uma pesquisa referente a um atributo X, correspondente a uma população considerada normal, de tamanho infinito, média μ desconhecida e variância populacional igual a 144. Considerando uma amostra aleatória de tamanho 64, esta empresa apurou um intervalo de confiança com um nível de confiança (1 − α) para μ igual a [99,0; 105,0]. Uma outra empresa (E2) trabalhando independentemente da primeira, na mesma região, também elaborou uma pesquisa referente ao atributo X utilizando uma amostra de tamanho 400 e encontrando uma média amostral igual a 104,5. O intervalo de confiança para μ com um nível de confiança (1 − α) encontrado por E2 foi de