Filtrar


Questões por página:

Em uma fila para atendimento, encontram-se 1.000 pessoas. Em ordem cronológica, cada pessoa recebe uma senha para atendimento numerada de 1 a 1.000. Para a estimação do tempo médio de espera na fila, registram-se os tempos de espera das pessoas cujas senhas são números múltiplos de 10, ou seja,10,20,30,40, ...,1.000.

Considerando que o coeficiente de correlação dos tempos de espera entre uma pessoa e outra nessa fila seja igual a 0,1, e que o desvio padrão populacional dos tempos de espera seja igual a 10 minutos, julgue o item que se segue.

A situação em tela descreve uma amostragem sistemática.

No modelo de regressão linear simples na forma matricial Y = Xβ + ε, Y denota o vetor de respostas, X representa a matriz de delineamento (ou matriz de desenho), β é o vetor de coeficientes do modelo e ε é o vetor de erros aleatórios independentes e identicamente distribuídos. Tem-se também que X´Y = e (X´X) -1 = em que X´ é a matriz transposta de X. Com base nessas informações, julgue o próximo item, considerando que a variância do erro aleatório é

A estimativa do vetor de coeficientes é

Um modelo de regressão linear múltipla tem a forma y = β0 + β1X1 + β2X2 + ε, em que β0, β1 e β2 são os coeficientes do modelo e ε denota o erro aleatório normal com média nula e desvio padrão σ. As variáveis regressoras X1 e X2 são ortogonais. O quadro a seguir mostra as estimativas dos coeficientes do modelo obtidas pelo método da máxima verossimilhança a partir de uma amostra de tamanho n = 20. Nesse quadro, para cada coeficiente βk, k = 0,1,2, a razão t refere-se ao seu teste de significância H0 : βk = 0 versus H1 : βk … 0.

 

Com base nessas informações e no quadro apresentado, julgue o próximo item.

Retirando-se a variável X2, o modelo ajustado é uma reta de regressão na forma

Um modelo de regressão linear múltipla tem a forma y = β0 + β1X1 + β2X2 + ε, em que β0, β1 e β2 são os coeficientes do modelo e ε denota o erro aleatório normal com média nula e desvio padrão σ. As variáveis regressoras X1 e X2 são ortogonais. O quadro a seguir mostra as estimativas dos coeficientes do modelo obtidas pelo método da máxima verossimilhança a partir de uma amostra de tamanho n = 20. Nesse quadro, para cada coeficiente βk, k = 0,1,2, a razão t refere-se ao seu teste de significância H0 : βk = 0 versus H1 : βk … 0.

 

Com base nessas informações e no quadro apresentado, julgue o próximo item.

A razão t referente à estimativa do coeficiente β2 possui 20 graus de liberdade.

Um modelo de regressão linear múltipla tem a forma y = β0 + β1X1 + β2X2 + ε, em que β0, β1 e β2 são os coeficientes do modelo e ε denota o erro aleatório normal com média nula e desvio padrão σ. As variáveis regressoras X1 e X2 são ortogonais. O quadro a seguir mostra as estimativas dos coeficientes do modelo obtidas pelo método da máxima verossimilhança a partir de uma amostra de tamanho n = 20. Nesse quadro, para cada coeficiente βk, k = 0,1,2, a razão t refere-se ao seu teste de significância H0 : βk = 0 versus H1 : βk … 0.

 

Com base nessas informações e no quadro apresentado, julgue o próximo item.

A correlação linear entre X1 e X2 é positiva.