Filtrar


Questões por página:

A forma geral de representar uma classe de séries temporais não estacionárias é o modelo utorregressivo integrado médias móveis de ordem (p, d, q), ou seja, ARIMA(p, d, q), em que p é o grau do polinômio aracterístico da parte autorregressiva Φ(B), q é o grau do polinômio característico da parte média móveis θ(B) e d é o grau de diferenciação ▽d, ou seja, Φ(B)▽dZt = θ(B)at em que ⊽dZt = ωt. Desse modo, tem-se Φ(B)ωt = θ(B)at que é um modelo ARMA(p, q).

A uma determinada série temporal, ajustou-se um modelo da classe ARIMA(p, d, q), e os resultados do ajuste estão expostos a seguir:


Modelo ARIMA ajustado à série temporal

Imagem associada para resolução da questão


Então, é correto afirmar, com aproximação de três (03) casas decimais, que

Considere a seguinte série temporal:


Imagem associada para resolução da questão


É correto afirmar que a média, a variância e a autocorrelação de defasagem 2 dessa série temporal, assumindo o estimador de máxima verossimilhança para a variância, são, respectivamente:

Um estatístico conduziu um experimento para verificar se existem diferenças estatisticamente significativas entre os resultados quantitativos de três procedimentos aplicados em amostras independentes. Os resultados obtidos com o experimento são:


Tabela da Análise da Variância – ANOVA

Imagem associada para resolução da questão


Teste de Levene para hipótese de variâncias iguais

Imagem associada para resolução da questão


Teste de Normalidade para os resíduos da ANOVA

Imagem associada para resolução da questão


Teste de Kruskal-Wallis para hipótese de medianas iguais

Imagem associada para resolução da questão

Estatística do Teste = 24,8078 Valor-p p = 0,0000041025


Então, é correto afirmar, em relação ao nível de significância de 5%, que

O estatístico que trata da análise de dados referentes à Justiça Federal necessita conduzir um estudo que requer informações sobre determinada característica quantitativa, X, dos processados em determinada Vara Federal. Um dos objetivos é construir um intervalo de 95% de confiança para o valor médio da característica quantitativa do grupo de processados, com erro de amostragem ou precisão de 0,5 σ, meio desvio-padrão. Ele tomou, então, uma amostra aleatória piloto de tamanho n0 = 5 que forneceu as seguintes estatísticas amostrais, média e variância, para a característica: x̄0 = 127,6 e SImagem associada para resolução da questão = 1290,8. A respeito das informações anteriores, sabe-se que é possível assumir o modelo de distribuição normal para a característica quantitativa do grupo de processados, que é finito com N = 2000 indivíduos e com variância desconhecida. Assim, conhecendo o escore da distribuição t de t4 (0,975) = 2,78, é correto afirmar que o tamanho definitivo da amostra n é

O estatístico de uma Vara Federal necessita verificar se a idade média dos condenados por prevaricação e a dos condenados por corrupção passiva são iguais. Para isso tomou amostras aleatórias de tamanhos: n1 = 15 de condenados por prevaricação e n2 = 20 condenados por corrupção passiva. As amostras forneceram as estatísticas: média amostral x̄1 = 25 anos e desvio-padrão amostral s1 = 2 anos do grupo da prevaricação e x̄2 = 31 anos e desvio-padrão amostral s2 = 3,5 anos do grupo da corrupção passiva. Verificou-se, aplicando os testes, que as amostras eram provenientes de distribuição normal, mas com variâncias desconhecidas e diferentes. Então, foi aplicado o teste adequado à situação e obteve-se, para a estatística do teste, o valor