Questões de Concurso
Filtrar
456 Questões de concurso encontradas
Página 8 de 92
Questões por página:
A forma geral de representar uma classe de séries temporais não estacionárias é o modelo utorregressivo integrado médias móveis de ordem (p, d, q), ou seja, ARIMA(p, d, q), em que p é o grau do polinômio aracterístico da parte autorregressiva Φ(B), q é o grau do polinômio característico da parte média móveis θ(B) e d é o grau de diferenciação ▽d, ou seja, Φ(B)▽dZt = θ(B)at em que ⊽dZt = ωt. Desse modo, tem-se Φ(B)ωt = θ(B)at que é um modelo ARMA(p, q).
A uma determinada série temporal, ajustou-se um modelo da classe ARIMA(p, d, q), e os resultados do ajuste estão expostos a seguir:
Modelo ARIMA ajustado à série temporal
Então, é correto afirmar, com aproximação de três (03) casas decimais, que
Considere a seguinte série temporal:
É correto afirmar que a média, a variância e a autocorrelação de defasagem 2 dessa série temporal, assumindo o estimador de máxima verossimilhança para a variância, são, respectivamente:
Um estatístico conduziu um experimento para verificar se existem diferenças estatisticamente significativas entre os resultados quantitativos de três procedimentos aplicados em amostras independentes. Os resultados obtidos com o experimento são:
Tabela da Análise da Variância – ANOVA
Teste de Levene para hipótese de variâncias iguais
Teste de Normalidade para os resíduos da ANOVA
Teste de Kruskal-Wallis para hipótese de medianas iguais
Estatística do Teste = 24,8078 Valor-p p = 0,0000041025
Então, é correto afirmar, em relação ao nível de significância de 5%, que
O estatístico que trata da análise de dados referentes à Justiça Federal necessita conduzir um estudo que requer informações sobre determinada característica quantitativa, X, dos processados em determinada Vara Federal. Um dos objetivos é construir um intervalo de 95% de confiança para o valor médio da característica quantitativa do grupo de processados, com erro de amostragem ou precisão de 0,5 σ, meio desvio-padrão. Ele tomou, então, uma amostra aleatória piloto de tamanho n0 = 5 que forneceu as seguintes estatísticas amostrais, média e variância, para a característica: x̄0 = 127,6 e S = 1290,8. A respeito das informações anteriores, sabe-se que é possível assumir o modelo de distribuição normal para a característica quantitativa do grupo de processados, que é finito com N = 2000 indivíduos e com variância desconhecida. Assim, conhecendo o escore da distribuição t de t4 (0,975) = 2,78, é correto afirmar que o tamanho definitivo da amostra n é
O estatístico de uma Vara Federal necessita verificar se a idade média dos condenados por prevaricação e a dos condenados por corrupção passiva são iguais. Para isso tomou amostras aleatórias de tamanhos: n1 = 15 de condenados por prevaricação e n2 = 20 condenados por corrupção passiva. As amostras forneceram as estatísticas: média amostral x̄1 = 25 anos e desvio-padrão amostral s1 = 2 anos do grupo da prevaricação e x̄2 = 31 anos e desvio-padrão amostral s2 = 3,5 anos do grupo da corrupção passiva. Verificou-se, aplicando os testes, que as amostras eram provenientes de distribuição normal, mas com variâncias desconhecidas e diferentes. Então, foi aplicado o teste adequado à situação e obteve-se, para a estatística do teste, o valor