Uma variável aleatória bidimensional discreta (X, Y) possui distribuição conjunta. Os valores assumidos pela variável X são {1, 3}. Os valores assumidos pela variável Y são {-3, 2, 4}. Sabendo-se que:
P(X = 1 ∩ Y= - 3) = 0,1; P(X = 1 ∩ Y= 2) = 0,2; P(X = 1 ∩ Y = 4) = 0,2 P(X = 3 ∩ Y = -3) = 0,3; P(X = 3 ∩ Y = 2) = 0,1; P(X = 3 ∩Y = 4) = 0,1.
então, a expectância da distribuição de X condicionada a Y = -3 é igual a:
P(X = 1 ∩ Y= - 3) = 0,1; P(X = 1 ∩ Y= 2) = 0,2; P(X = 1 ∩ Y = 4) = 0,2 P(X = 3 ∩ Y = -3) = 0,3; P(X = 3 ∩ Y = 2) = 0,1; P(X = 3 ∩Y = 4) = 0,1.
então, a expectância da distribuição de X condicionada a Y = -3 é igual a: