Se Z tem distribuição normal padrão, então:
P(Z < 1,64) = 0,950; P(Z < 2,05) = 0,98; P(Z < 2,24) = 0,987; P(Z < 2,40) = 0,992.

Suponha que o número de pedidos de empréstimos que um banco recebe por dia seja uma variável com distribuição de Poisson com média de λ pedidos por dia. Sabe-se que o parâmetro λ satisfaz à equação P(X < λ) = 0,008, onde X é uma variável aleatória que tem distribuição normal com média 15 e variância 25. Nessas condições, a probabilidade de o banco receber, em um dia qualquer, exatamente 4 pedidos de empréstimo

Dados: e-3 = 0.05; e-4 = 0,018)