Deseja-se testar a hipótese se a altura média μx dos trabalhadores de um determinado ramo de atividade X é igual à altura média µy dos trabalhadores de outro ramo de atividade Y, aos níveis de 1% e 5%. Para isto, considerou-se que as alturas dos trabalhadores de X e Y são normalmente distribuídas com as populações de tamanho infinito. O desvio padrão da população X é igual a 3 cm e o desvio padrão de Y igual a 4 cm. Uma amostra aleatória de 2.500 trabalhadores de X e uma amostra aleatória de 2.500 trabalhadores de Y forneceu as médias de 160,0 cm e 159,8 cm, respectivamente. As hipóteses formuladas foram H0: μx − μy = 0 (hipótese nula) contra H1: μx − μy ≠ 0 (hipótese alternativa). Utilizando as informações da distribuição normal padrão Z de que as probabilidades P(Z>1,96) = 0,025 e P(Z>2,58) = 0,005, é correto afirmar que H0