Dois grupos independentes (G1 e G2) são formados por trabalhadores de uma cidade. G1 é composto por uma amostra aleatória, com reposição, de 100 empregados da empresa E1 e G2 por uma amostra aleatória, com reposição, de 60 empregados de uma outra empresa E2. Deseja-se testar a hipótese, utilizando a distribuição qui-quadrado, se as medianas dos salários dos empregados de G1 e G2 são iguais ao nível de significância de 5%. Foram formuladas então as hipóteses H0: As medianas de G1 e G2 são iguais (hipótese nula) e H1: As medianas de G1 e G2 são diferentes (hipótese alternativa).
A tabela abaixo apresenta o resultado de um levantamento realizado com relação à mediana (Md) dos salários do grupo combinado (das duas amostras juntas).


Dados: Valores críticos (c) da tabela da distribuição qui-quadrado com n graus de liberdade para α = 0,05, tal que a probabilidade P(qui-quadrado > c) = 0,05.


A conclusão do teste é que H0