Considere que a amostra aleatória simples X1, X2, ..., Xn tenha sido retirada de uma distribuição exponencial com função de densidade na forma f(x) = λexp(–λx), em que x > 0 e λ > 0. Com relação a essa amostra e à inferência estatística, julgue o  item  que se segue. 

Considere que T(X1, X2, ..., Xn) seja o estimador do tipo UMVUE ( uniformly minimum-variance unbiased estimator) de λ . Nessa situação, a variância da estatística T(X1 X2, ..., Xn) corresponde ao limite inferior de Cramer-Rao.