A tabela 1 mostra cinco níveis de energia do átomo de hidrogênio.
![Imagem associada para resolução da questão](data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAQYAAAD+CAYAAADYg6v8AAAgAElEQVR4Ae1dCbxNVft+9hnuaLzGyBzJlLGMqXwVIYprClFmyhBKiVSElCRT6itTkSGf/vo0GiOFDJlD9ClDyXDnM+z/733PWcdx73Xv5p7LOfu8y+/a++y91tprPe9az3rXuyZN13Ud4gQBQUAQ8EPA4ncvt4KAICAIMAJCDFIQBAFBIAMCQgwZIJEHgoAgIMQgZUAQEAQyICDEkAESeSAICAJCDFIGBAFBIAMCQgwZIJEHgoAgEHBioEkRbrcbdHW5XIKwICAIhCACgScGt5th0N1uaJoWgpBIkgUBQSDgxECQWiwWOEVbkNIlCIQsAlpuTInWddIWLBj2zDOiNYRs0ZCEhwICVM+o6x4bHYVXJ00KWJJzhRhU6qrXuBPPDOyvfspVEBAEAoiApgPUcbdYNMz94ANs3fpjwGK3BSymdBGR8TF//rzo3bdfujfyUxAQBAKBABn3LVYryJI3f+HCQETpiyNXbAwUOyVWRiV8OMuNIJA7COieEUCHwxHQ+HNVYyAjpDhBQBDIHQSoC0E2htxwuROrV2Nwy8hEbshM4hQEGAF/Ugj01IBcIwaRnSAgCIQuAkIMoSs7SbkgkGsICDHkGrQSsSAQuggIMYSu7CTlgkCuISDEkGvQSsSCQOgiIMQQurKTlAsCuYaAEEOuQSsRCwKhi0DYEAMt7LqaM3KwBi1UIWfE79W+I88FgVBBICSIIaeVkSu1ZgGRQ2YEkX7XiPTfo9+adxYnTdqSiVuhUrwlndeLQEgQg6q46Sus0UxTpeY4NEu2U0h5yXj6iGkZuXdnKiIZWrgiThAwMwIhQQyKEGhXKHL02/8vOwFRpSb/dE1OSc7Uu+8b6sbPl5p6SpvPWIUU/JCRW7MikGuLqAIJGFXoxMQEDBn8DDTo0N06q/ZulxvRMTGYPmNmNp/TAV3H8ePHsXL5cgx+djh03QVNo5bfQxn0jRO/n8DMd97BxDfe8Mansb9/v/8BCuYvgDSnE2XLlkP9hg2y+Z68DgcE6NjX9GsUqExarCHR3mYpopAgBrfbCYfTgU3fb8a706YhJiYGSUlJiI6OhmahKp21c7tdsFiseOXlMRg58nno8Oww5SEHC1xuJ/NDyRIlsPH7jTh86CAqVrqdSYNI6P0PPsDCBYtQIK4g+vfrh08bLr3ig0obueKh/DA9AkQKLidteKzDarPB5XRyVzUzwgg1MIKeGKhS856y3kO57/tXM9YWNGigNehWg+y8Z/cupKSkoNIdlUFdkl8PH8b0ae8g1ZGKvLF58eLYMShQoADubXIPFn40D2NefZW7DZs2rkeRIkVQtnw5ti0UKhSHNau/QPOWD/u6J9lTU6gVC0mvIQR0IgQrZk2fjqTEJGz6YQtrs316PYmHH2ljKIpg9RT0Og+RgsNJLb4FsbHRjKPT6eLRBbvdDpfr6sOQCnRi9v9buRLly5bjR8QxT/Xpg4uJCejatTv+/vssRr8wCknJKWjV+hHs2vuLh4wAfL5yFerUqOGzLVSpXBnffvsNx0OEoIYx1bfkGh4IkFagzFG7du3G6i/X4MMP56H5Qw9h7r8/DHkQgl5jIDuA3QYkOBw4e+Yv3NOkCffryBDocjnR/IEH8Mr4iVkKgojkxMn/of7dd7Oqt3HtN8gXmwf//vBDMj2gVp06uO++prDZbLi7YQOcPn0aFy8lIH/+/Ni5ZzfeeWc6EwCRU9VqNbBl69bL2oJsRpMl9mZ9SV1MZUuIiozEQ82aIV/+fGjz2GOYv3BByGc76ImBO/+aBps9Annz5mU7Q2aoe+YoXH5DlVj1/W02Ky5dSkSJEiXZw46fd+Ds32fRqWMHWKw2/kRERCTOnfsLxYsVx9316uGT+R+hXv36sEdG4o6qVeFwukEcULBQHM6dP+8Z/vSOdKjvXP663JkdAdo9SdkSnG4XypYrD03TERUZwc9DPf8hQAyksOtwOh1c0XmCUrqDbMgSPHfObFb3f/xpG+67tyk6dXncNymJhhujoyLAXRDoKF68OCrfVhHzFn3McVN35Nuvv0KhQoVZo3iqVx+MGTMahw//iratWrGMiVzo2y6HA9FR0byfpRq6FBtDqFeD60i/pkGj7gSNkOlAVGQUaHKtzW6HnRqbEHdBnwMyPlJvLjIqiiv2yKHDMkD+6qTJ+PKrb/DQQw9g4qRJeKRNazwW3wGRkZE+v+XLlscPm79Hi1Yt0aJVK8yYNQtjRj2HJk3vw/ebN+HnnbvQ7IEHufJXv7MGklNSsPOXPRg3YYInDu9ZGT9u3YqStxRnEhJNwQdveN4QOWieWbEuGvmy0uxaHS6voTyUQQl6YmDgNStXxOFDBzNJ0IiEv6NuA+2JGd+xE+IKFkC50mV4BIKIgYyD9K5T18cxbNhQ1jpo9GHVqlVYOG8evvziCxQrcQs+/PBD3p+fJE2awUsvjkZCYgJiomM8XRLvlOofftyK/gMG8uevTIV/iuTe7Aio+QqkMQwc9DR3MclgRUPob06ZHPLZDwFi8Ew/joqMRu9+AzIFnFpuImkapWAWgGewhc/P9E6HLlO2PArFFcHWLVtRv0EDFCpcFIOfHZFpfMQ7je5p6ntH5EJay+kzp6G7XBze91JuwhIBZXikeTS3V6nsw4DKYP2GjXy/Q/Um6IcrjQBLi5rIBqCGDm12C89V8C18Yq3BgslTpmDnzz8bifIKP6SR0JDppnXr8dLYl9PpK1d4lR+CgCkQyNUj6ho0qI8tW364IUDRECNNRCJ37tw5FCxYkIc1iRyIOGguAw1xkvrPmsU1pkqRjm9B1jWGF++CQG4i0LBhA2zevCVgnzCFxkBoFC1WjCdBUetOpOA/YkD3ZKu43NW4dvwoPA+BehdyXXsMEkIQCB0Egt7GYBRKf0OgIgWqyMqpFZJ22/UtmVbh/eNUcctVEDAbApdrjtlyJvkRBASB60ZAiOG6oZOAgoB5ERBiMK9sJWeCwHUjIMRw3dBJQEHAvAgIMZhXtpIzQeC6ERBiuG7oJKAgYF4EhBjMK1vJmSBw3QiEBTHQWgp/R4uk/J+pe3qunHqmfvtfs3rn70/uBYFQRSAsiIEmP6kpzVSpaV8GekZE4PJOk/Z/T/cqDPlXREBX9S5UBS7pFgSMIBAWxKAqPQFCFZ4OjGFCoPXY/qShe97Tmnr2S57pPW8j5zmBitdeyLRoDzDyv2kRMM2U6OwkdOzIUbz77jtIS01Drz59UbN2LdYYaIsup0sH7ULvcrsx8+2p+GXfPjRp1Ajde/TgaB1OJ94YPx4n/jiJ5g8+iHYdOmb3OXkvCIQ0AmGhMdBmDYMGDUCd2rXRoUMHPD14EE6d+tOzNFuzgJZP0Db0U6dMxoG9+zBy5EisWLEM/577Hncknh0yBC7djeHDR2DOe3OxetUqw0L374oYDiQebxoCqttoJAFqn2jaZYycuqY50rjRuRyHzgcX0Tkml921fOlyqBt1FxbEsHvXTkRGR6LrE0+gyb33oO6dNbH0k0Xew2roNCHaOFbH5//3OV4e/xpuu60CxowZi89Xr2byWL9hI0Y8PwoVb6uIpwcMxPLly33yUd0O3wO/Gzr3wtsb8Xsqt8GGgL/RmeTl//vqaaX9Hl1wONKwdPEn6NyhPR568AGMfHYInA4H3p89C61atkCbR1ph4muvIjUtjctZcnKin9Xq6rHf7DdhQQwHD+zHLUWLebaFs1hQukxpHD1yDG63h7V5X0m3m/d5LFasKJ9aVf6223D6zBmcO/c3CheO4w1gNasFZcqXx//+PMVyo229ruaocNEqz6v7uFpIeX7DEfDampSsVLnIKh1UZmjznnXffoN33p2B7t27Y8bMmbznR+eOHfHZqv/gpZdG45Vx47Bt+3ZMfm08E050dIw32uBuMsLCxnDhwgW//Rk05M+XD3TsHTkSMB1fRy7hUiLUSTO0sYvNasWF8xeuOArP6UiDzXv6Fe3RoPxzBH7/kf2S3n8yfz5+3vEzk5Lfa7kNIgRIY6Ry0KJlK9BJZ2rZflZJpDJD5518vupztGndijcYpn0gJ73xJho2uBsz3p2Bu+o34HjHv/46hgwZwhoDbRpr5fJGNBS85BAWxFCqVCl8//33oE1kqQCcPX2aj6UjsZCAqXWnwpE3byycDidsdhuSkpP5WqRoUZz96yw8m39qcOtuREVF8ZmFFivFqHnfXal8qW3lSpUug8SkJCGGrGrZTX6nNhcuXqworH57eGSVLO5u6EDFShWxbt06OBwu2O02bNywHqkOBzasX4869e7inaM3rFuLQgUK8lA3kYLHNqG+mtVXbt67sCCGWnXr4vXJk5CcnMSVeuuO7Rg6eCgPW/7191lYNCsKxhVEmdKlWTX810MPYeWypahWpQpiY2ORN09e7Nu7D1WrVcXK5SvYRkFnFnJXgrcPz8j86kmTe5uC/sSZEAENeLJ3b+zavRuNGzXgrQXPX/gH782ajZfHjcOar7/ihiM1JQWzZs327ELOegKVDlVCghMX0+z5mDW8Ot6ZNhWrPv8ckRGRuL1iRbz59ttIczgx+rkRfGbljNlz8NOPW/HCCy8gT948SE5IxOz33kOZcuXw9X+/wsTJk3lrehru/OTTJXzACB+oS/0F1W/IOhHy1kQIqJPSlbb5119nkZicjMJxhRATE839yN9PnOAraazklI5AGoPm3ck8UJAEes/HsCAGOvbe6XTj4vlzbAwsXLiId4KTBhLojKlvY9TLY7myU1eDBFqqVGnWKOg32RtIVfz773MgdVN1EwIlVIkn9BDgoUc2MoFHrjx2qst2A+5qsA2LRr2IH+hwGv/uZmA1hkATQ1h0JYgUbDYLChUuwjYGGkZUO0WvWb0a/QY/w6RAxZMEXKp0aZ9B0iNwDRERVhQr6iEF/yFKEjjNrJS9IEOvcuc0xXRuCTlSGGkmLRktVdlSJGD122I0zeFAhN3utWn5vchpQnIhfFgQg912OZsWi40Pp1VYdu/5lLr1XclPZs53yIi3pVB+hBQUEuFzpVPY0xUDzrzdHnFVECK87yhssDt/3SbY0yrpEwQEgRuEgBDDDQJaPiMIhBICQgyhJC1JqyBwgxAIG2Ig45Bafk33ZD9WlmPCWr1Tz+kd38NjWCI//MxvM5cbJCP5TAggQOXHV65CIL3ZJTFzK1t2oULsPQntzNkzmPn2NNhsNvTq3x8lSpbkk7HpnTIepqSm4v05c7B/3160aPEwHm7dmnN6+OAhrF+/FlGRkXA4nKhVuzbq1KsXYihIcnMTAXWmKe3dQft9hLoLC42BDrPt3KkTbqtUCcVLlkCXLp15FydaBacc+Xnhuedw8NBBtGsfj2nTp2PF0qVMGosWLOAprj9v/xn79+7F+X/+UcHkKggwAjQrofeTT2LXzztMgUhYaAyb1q1DyVtKoFuPHlzRN2/ejDWfr8JDrVrxb1IBacHU/kMHMfXNqah8R2Vs+O47bFi/AY/Fx+Pob8fwzJChqHfXXZ4hqismqpiiHEgmcojAe7NnYe2GDejSuXMOYwqO4KYiBv9ugT+8P+/YgWKFCvMMNZrEULhgIfyy5xe0btuWF0DRwhkih3at22LUyJGoU7sWduzeg5fHjuUZa8eOHcOUyW/g+O+/o1yZMpgzdy4KFCzg+4RngVVG5YtsFBcvXsSlSxdBq+rEBScCZDYi9b9QoThER0b5upbZpZbkTm3EkcNH8MXq/+Keho1gt9qDfBVEdrnyvDcNMVAlPP7bcVjsFhZuUdp/gQyIOnDxn/MsbJ6gpNMUVY2JwOVygxZDkYCtNht3I+IKxSGuUCG4nE4c+fUwataujXq16+DFsS+jYFwBjBs9Bs+PGIHZ788Fz4DUqVBlJAWCl2bGzZ4xA1u2buVvGhOJ+LoZCJAs27Vpg649exr6PJUZ2grQCgtGDB+O8ePH451p0+DSXVwuqIyFsjMNMSQmJmDEyBE85blM6TKY8uabvtVscUUK49Jvx0Etg2b1LJOOjolmUqAVklSx/z77FzZt+R5r129AhM2OB5u3QP+BA9C+Uye8/e67cBOhAGjd9hG8OGYMy5yEr7b3Sl8IiKjIIDV85EhujUK7mKTPnbl+8+gT7QzuXXLNsssmi5pFg81iwZQJk9C0SRNUqV6NywItqyYDJDU0oexCO/Ve5EmQ0VHRWLpsGTXTPNpAFZEFrIE34Bg0aBBv5UYtwy8H9uHJPr28zE67QJPGYEdKchocqWmItEfg7NmziI6KAm0i27FTR6xdtw55YmNB3ZJy3tVyFBdX+ExWV9Jz2uGH0kMbzrLOGcolxcRpZxlaLJ4KbXBEQTUoi5YsBjUyy1Z+hr/O/o0ff9qONyZPxAPNm4c0YqYgBhKsb9cdP8MgCxxAuQoVULtmTTzWtg3zRpXKlVG1enWkpjowcthQRNhsmDT1LXTr0hmPPtqW7QhHjh3Di8+PQtny5dDsvvvQpnVr3q/hjz9PYfZ7s1no2amLdtplFqE/dBXSJdxg4q8oQwbCqO7jzt27fL6f6tkD3bt2xz333+d7Fqo3piCG7MCnHZkmTJqEU6dPwWa1o0iRwtw6REVFYPDQIVi6eDHbIAYPfxZP9umL8xf/QdGiRWG3RfDzVyZMQFJCEs79/RdKlS4Fe8TVF8pklxZ5b1IEdB1VKt+B/HEFxfgYKiL2qIoaSpQowUlOTklFdKSnch8+dAh9+g9g4yCp/Pnz50WBArQnJHVEPN0MWiobUSAf8ubNw/YIMiqq/mioYCDpzF0EqDs6dPhwzx4eLjdo279Qdpmb00M5R1dJO6v9ZAsAEGm38846ly5cRPOWLVGgQAG46dg67oZ4BEr+SV30jGzoXjuEFUmJSUIKV8E4nB9bbFbWLmlmrOpmhDIeYUMMJCSiBR5i1DyaQGzePFzhWajeYUsaZfLQBx0SorPtgknFoiE1zYHYPLFXrKsIZeFL2gOLAGmZtCGsp/wENu4bHVtYEANNfKKW37vHFlzeIUqaBk0dQnpPEx78mZ7nvhNLeMejaQIUGRN5pEGNePjI5vIp2TdagPK94EFAlZ/Q7kR48AwLYvBoCRY2CpF9wGaz4s9Tp3ibLSIAWkRFbO/Z9VkDnVXpIRMdaWl03JhHcyDIrBaNwyrh01Vt4xU8RVRSIgjkDIGwIAbqClAFpv34yE187TX+42Wy3n37aMKKmqwW/1g7NGrYEI0aNsK/7r8fFy9c5JmSFParNWvQr19f328mkJzJQEILAkGHgGmHK6nroFpy0gqo35eYmIhhQ4Zg9y970KhBA7YfsN3Bu8s/aQakNZw5cwZbftjiOxiErQ6aBeNGj8ZXa79Dvnz5fGFJ2/B0U8KCY4OuAN/MBLEtQXdj/979WPbpYpQuWxbde/RkDfRmpisQ3zZFaVbGHlXJ/SsqPWN1H8DfZ8/igX/9C4MGDACdD0GOhx7phrQKiwUHDxxAvvz5MeHVVzHupTE4duQIE0xamoMXTi1csIjnyHMQjiHzrgRpEupPpc/rXS5BiABpjyQvpVVml0SWrcuFo0eOok+/vihfoQJ279qN3k/29NissosgyN+bghio4pOgeFojAa557Al0SxWfiQJAqbJl0bFLFzidTkRGRnIYavGpUJDxkTSGn7dvQ0pSEkqXKoU8sXnQtVs3nD59BjSrefCzw0E3bLPIRrDKbimkkA1QQfSa5ErHCnBZMpAuWpG57acfMbB/P3Tp1h1Tpk7F5h+3GQgZ/F5M0ZWgyqcq+IzpU3khFLX+w4YMRqPGjXmFJY1A0J4LVGFp5SSRA4Uhx+cV0vkQTic6d+uKTl0e5xEKMkgeOHwQixcuxNNDh/jWPdDimewcTZmg+N+aPAmbt/6gxkCzCybvbwICRAi0s9fDDz6IHr16+cpFVkmh8kUuvmMnbli2bduORQvm4cFm9xtqOLKKOxjemYMYvDMRab1E8+YtUKN6DWgWK26reDt3AzxGRc8WbkQiVquN5y/4BOC1OpKw//PZZ2xnaNuuHfdBqNBERkdyN4O1D1pu68peD1Ck07tvX8R37uQzbPq+KTdBg4Bn3Z2GuIJxhkjBP+GqQdq1YzsuXrzEhx2npqUixnfcvb/v0Lk3BTGoSkiwV6pcmf/Si0D54dEJp4NbCJqwFBlh55OtBz89CHPf/wCpKal4d9YsFCpcGIcOHcTho0cxfeYsjy1CaRhWz34ORET+Rs7036TfNKuS/sSZCwFqJKhM0elSpHH26tcPTzz1FDp17IBN6zfgQVldGXoCr16tOuLi4thuQP1JEuyvh49wJY/v1AkxMTFY+umniI6OwoIFCxATHc2ZJL+09Prh5i1ASylYmfRbzRl6SEiKrxcB0i6pPLw9eTIcLhdGjR7N9glqWHwrfa838iAIZwqN4VpxbNy0qc/wSJ0CMjg1adKEJznRQqpWbdui5SOP+LoPyhhFhaFI0aIY9Mwzsl7iWkE3oX8qD4/Gd0Dvvr1w9swZnDl7FsWKFMH9DzwQ8rkNi9Our1dKRBrU9fB3mT3zfy/34YGAfxcyITEBO7dtR978+XFnzZq+RudGIiGnXd9AtNOTAn06s2c3MEnyqSBBQE2eo+TQsDZpocope5b6HYrX7MfdQjFXkmZBQBDIEQJCDDmCTwILAuZEQIjBnHKVXAkCOUJAiCFH8ElgQcCcCAgxmFOukitBIEcICDHkCD4JLAiYEwEhBnPKVXIlCOQIASGGHMEngQUBcyIgxGBOuUquBIEcISDEkCP4JLAgYE4EhBjMKVfJlSCQIwTCY3WlrntWTlrpRGM6Xu7KFQ98oAzvIu1kMOn8CM+x93SuhOeQGtoBio6qo3X4vFQ7xI85z1GpkcC+jX5o1b3u0j2rbTXPEjt1EnYowxQWxEDiUoeB0Ko4i2bz7PHoXRRFuzTRH+3LwKTh3W6ensFNW7RpsFutPlKxKlKg997dn0K5EEjarx0Bz3EDGm8TeP6ff/Dt198gKjoKLVq1htUa+op46OfAgExJI5g8YQKaNGqCVq1bY/rbb3Mo1hu4Yuu8G8+6b7/Fgw/8C4+2aYvuXTrzVl1EKKs++wxNGjfBY4+2xYC+fZDq3WHaRwreMzENJEW8mAQBajRcThdOnPgd7dq3x6+HD+Obb75Bq+bN+ZiCkM+mnouufv27czF241Hv2bVLb3rPPbrT6dLT0hz6XfXq6sePn+AI3G637vI+v/fee/VtW3/k30/3669PGPeKnpKSqteoVkM/fvw4hx3z/Av6pPHjdZfDaTwB4tN0CFC5ITd5/AT9zUmTdN3t1t0ut/5om7b61s2bb3h+GzSoH9BvmqIrQV0F3jreb5s1tScfvapavTrWfPk1dwkSEpJgtdhA2zfy5q7UG7AANosVX375pXf7cB2JSYnIkzcPDh88iAoVyqFUqVIgzeOB5g9i2rTp0PgkbJ2fUeuh7BSqpfD0Nj2//O/Ve7kGHwJkO6Jdma60QGWeTrfLxUfej3hhlK9bmpKWhpMnTyKuUKHMA4XQU1N0JUiQpM1TRed7PktC9506TEKMsFmw4MMP0ez++1C3dh2ULHkryKDo8h5RRzKjLd7oVKH27drhwKFD6NK1G8qWL4cjR47i0IGD3J/85quvcf7CP0wERAaZkQLFpYyUqiwQOchfcGJAMmJS8NiafeVGyS6zK23Gwmedsn0KSElNQ8d2j+LRRx5BhYoVMwsSUs9MtbXblh9+YANiVFQUqlWrxqda0wiDcg6HE8nJSWjcqDFmz5qJ+vUbwEIjEE5ify9Hah6DUp8nn4I9IgKz576HAf364YeftuG+pvfgl337YNEs+O+a/3K0TEZZnDNx9Ncj+Ofied59WqVDrsGFADUc0dHRfJpUwYIFDSfOkZbGRxFQ2RnUrz/+OPUnli1b7ilLN9goLVu7ZSI2aolJuG9NmQKn24WihQtj5qzZfGw9jUI4nW6+p1OuaRuuFg88gJXLV6BW3XqIgM4qIR1vb7fbWCugE4aeHfkcBg4cwKMOEyZOwuwZ05GSmIxhg4fgo3kfMZlQd4JUz6s5Ou5s6dIl2LL1xwxdjauFkec3HgFPN1BH25at0LVnT1Y/qQxk5UhTpIaDGpW333gTBw4ewL/nzePzTumgIovVSIckqy/c3HemsDGQCGhIcemyZR6V0K+fSHvzrVm9CgsWLsSny5YBVg1u3Y2Y2Fg+U0LZBkg1rFWrDtavX8uH1p458ycioiJ5iPLpgQMwf9FC7q6MHzcOte68kzWN7ERH24iPHPUC2z/89wjMLpy8v/EI+G/uauTr3I2w6Fj88SIs+88KvP/e+9yI/H7yJIoXL44oa6SRaILWjymIgdBVFS+zjTibPfQQ5s2fjy4dOyImNgbHf/8dS0nlo2Psnn6GBfrWO9PQrXNHtG3bBpUrVsKe/fsxasQIpDkdKFGyJDrEt0eB/AVx8o8/sHjJEkMC9aXFzyhqKKB4uuEIqPJj9MMut4sN1r8ePYqiRYti1IsvcDeWbFYvvfQSateubTSqoPRnKhtDVghTd+OX3XvgcDpRu3YtPm+QDE4HDhzEp4sW4pWJE9lg+OepU/jt2FHUrFULMTGx3pELHUeOHEFyUhKqVKsOm1XzEVFW35R35kWANAzf/DbvIcpUxkh7pXLlaxRuEARiY7gOoJUNomq1qiww6vuTvcHlBk78dgwDhgzxEUCJEiVAfzyU6R2+gtuNSpUq+bop15EECWI2BDQLn2SmyICu5G4GKXg/HdCLaboSWaHCNgg66drriYYlyUXYLXi4dWvPEKdOY9iX/fgbFemeBH+jW4Gs8iTvbi4CqixluGZhjL65Kb62r4cFMRAkSoDp4VHPs+tjKn/pw8tvQcCMCFx9rM2MuZU8CQKCgCEEhBgMwSSeBIHwQkCIIbzkLbkVBAwhIMRgCCbxJAiEFwJCDOElb8mtIGAIASEGQzCJJ0EgvBAQYggveUtuBQFDCAgxGIJJPAkC4YWAEEN4yVtyKwgYQlplxsUAABSHSURBVECIwRBM4kkQCC8EhBjCS96SW0HAEAJCDIZgEk+CQHghIMQQXvKW3AoChhAQYjAEk3gSBMILASGG8JK35FYQMISAEIMhmMSTIBBeCAgxhJe8JbeCgCEEhBgMwSSeBIHwQkCIIbzkLbkVBAwhIMRgCCbxJAiEFwJCDOElb8mtIGAIASEGQzCJJ0EgvBAQYggveUtuBQFDCAgxGIJJPAkC4YWAEEN4yVtyKwgYQkCIwRBM4kkQCC8EhBjCS96SW0HAEAJCDIZgEk+CQHghIMQQXvKW3AoChhAQYjAEk3gSBMILASGG8JK35FYQMISAEIMhmMSTIBBeCAgxhJe8JbeCgCEEhBgMwSSeBIHwQkCIIbzkLbkVBAwhIMRgCCbxJAiEFwJCDOElb8mtIGAIASEGQzCJJ0EgvBAQYggveUtuBQFDCAgxGIJJPAkC4YWAEEN4yVtyKwgYQkCIwRBM4kkQCC8EhBjCS96SW0HAEAJCDIZgEk+CQHghIMQQXvKW3AoChhAQYjAEk3gSBMILASGG8JK35FYQMISAEIMhmMSTIBBeCAgxhJe8JbeCgCEEhBgMwSSeBIHwQkCIIbzkLbkVBAwhIMRgCCbxJAiEFwJCDOElb8mtIGAIASEGQzCJJ0EgvBAQYggveUtuBQFDCAgxGIJJPAkC4YWAEEN4yVtyKwgYQkCIwRBM4kkQCC8EhBjCS96SW0HAEAJCDIZgEk+CQHghIMQQXvKW3AoChhAQYjAEk3gSBMILASGG8JK35FYQMISAEIMhmMSTIBBeCJiaGNxud6bS1P2eqnt19Xt1xW1276/wLD/CDgGzlQ/TEoPL5YKmASQwIghFEvTc6XDA4XT5Cq9653+lewpL/nXdQzAuv3h8geVGECAEvGVElZVQB8WUxECVWiPJaBa+ahYLV3B+pGlwulyw2axIczh8AqV3FouFyYD8K6cRu2gWOBwOX1x0L04Q8EdAd5tLZ7hcA/xzaYL7Z599Fgf3H/BpC0s++QSPPfYounTqjC9WrUJamgM2qxW6V55EJLt27UTH+Hi0adMG8fHxePvNKUwWhw4cwJPdu/OzcaNHw2a3mwAhyUIgEdCsVpw5c5obETNQRMgSA4GvVH8SsFLh/vnnHwzo1w8r/7MKiYmXuGKfPHkSM2fPxsyZszB5yht4c+pbOHfubzgcTu5uWDQNbpcLm9avQ1zB/BgxbCgG9e+Plq1bw+12YeTIEXj00bZYvGQJ9u7bi4/nzYPOuoUqWmYoCiov4Xf1L0fUdbxWR2G2/bgV3Z/oweXoWsMHo39bMCYquzQpQZLqT/e6rsNitXKwSa+/jipV7sAff/4Juz2Cq2+B/Pkxd85cFC9enLsETqcLqSkpsNts3DV0wwWLRcOB/ftx//33w2q1okz58ihV6lY4HS6kpaXijqpVOf4K5cvj+G9HPV0VogedbBnEr9x58SXdnyqufOPzIjdBggCVI7IfWTTArevwlKSsE0fyJblS+ZszcyaWfbYCySkpXHayDhkab0OSGMgG4F/ZqCKTI+aeOHkyXzd+/73PLhAZGYU7qtyBhR/Nw6KPP0bjhg1R6tZb4XKTrcEGTbPC6XDixMmTWLBgPooUKYq9+/dh+NBhaNehAwYNGIC+/fogLq4QUpOTsXT5Cv4eaSkU1nNNJ3CvMYq6nlTw/NObzqf8DAIErF47FDcWGWg+YwKVPKlROnv2LObMmYsePZ9gj4o0MoYKnSehSQxefBOSEpEnJtYnDCKIlDQHoiLsSE1JRUREBL8jYVusFtSuWw+R0VEYOfJ5jHpxNIoULQK3y83vqE/RulUrxHfsiHz582PeBx/gkyWLEd+pM+YvXIiad9ZE+3btMWLkcHz95Ro81j6eWxdNJ20jYxvj0SKAHzZ/j23btkNH5kOnoVNUzJtSi2Zhg/R9Te9Frdq1DJE4aQpE+FTmxr7yCs6fP8/2Kn9NMZQRCzlimDtnDsaOG8eV8o4qVfDNV1+xcBSDR0bYWb2z2m3cxSAtgkYWiADuqHoHqlS9A5s3fY93356K0ePGwW63c4tPoxRP9e4NNjpAQ5vHHsPU6e/g5B8ncfzECSxY9DEbK58dMgQrP1uJ1m0fg91m4W9kVgA8WoQFu3fuxC97dl1hD8nMvzy7eQho0FiOpW65BTVr3ckVnCp9Vk69pxEqvtc07opQ31Q1ClmFD/Z3IUcMvfv2Bf1dzRFBeFQ5jQmBKvr6777Dxg0bMWbcy/wuJjoaKSmp3I1QGkNiUgL6PtUL8xYuZKI59cefiCtQEJcuXED+fPlgt1GXQUeJW0vjQsIl72+lBWRUHlXh6D9w4NWSKs+DFAEaoTbqqGEhR+RAw+A0tG0GF3LEYAR0EpLL6eJWmmRc96678fIr4+B+0YXIyAhs3LwZnyxeDKfTiY8+eB+pqWnoO6A/YmOi0bPb46jfoAGWr/gMT/XogUq3V0ZMVBSGPP00ypQpg/+uWYMnunfjZHgqPxkgdY+iYSRx4seUCDjS0rghugZOCWoczEFvmUA8btzLqHDbbczksXlisWL5CpQuWxolS5fGis9WoGTJEqw9NGzcBMePHWOmnzV3Ltq3j0d0dAymTn0bXbp3Z/3j0+WfoXGjxihQoACmTp2Gx5/o4RseJds0T4LKJA3yKHwQsJIdy2LlxsgMdgZNp+Yul1yDBvWxZcsPuRT71aNVhiGe2+Cd/UgaBHUyqJVXFVmzaPhy9RcoWqwYatapyS2/y6XDZrdCd7mR5nQgKjLKMzatkbpIgr9sbFRzGTythGk59upAyxsfAjTFnoY7qWylHzXzecrFm4YNG2Dz5i0B+4JpuxKEkOrn073VlnHkgJ4/1PJhH5jUt1Q2J81qQZTVA4/FeyWPFstlyMhoJU4QIATIBmUmJ82cmaQpeREEAoSAEEOAgJRoBAEzISDEYCZpSl4EgQAhIMQQICAlGkHATAgIMZhJmpIXQSBACAgxBAhIiUYQMBMCQgxmkqbkRRAIEAJCDAECUqIRBMyEgBCDmaQpeREEAoSAEEOAgJRoBAEzISDEYCZpSl4EgQAhIMQQICAlGkHATAgIMZhJmpIXQSBACAgxBAhIiUYQMBMCQgxmkqbkRRAIEAK5SwzXsnlegDIk0QgC4YKA/w5LdC5KIF3AicE/sYFNaiCzLXEJAqGPANUv3qUMgMOhNiYOTL4CTgxXkIFJdswNDNQSiyAQeATULmVq57FAfeHyPmWBitEvnuTkZKxfu9bvidwKAoJAoBDQ3W5YvdsOugOrMCDXiIE2ZK1XuzbmL5gfKByCOh61/6PaIDaoExtiiVPYuvkwlyt00hDLSWCTy4cxe/dyvqtenYBGnqu7RKvdmgOa4iCNjPKqbK0kK3VSUZAmN6SSpU71Uhgr9TmkMhFiiQ24jUHln4yQ4VQ5aMtwOoUoNc17ZJkCQq45QoCOGHS7dT6omMpT7h12kKNk3pTAVMf8/wKZiFzrSiiFz3+UIpAJD7a4Bvbpgw/mzeNzBeioDjpOXVzOESB1mXbpT7iUwEcHMjnkPFpTxKDqWG5kJteIQSU2NxOvvhEMV6KBJ7t3B51mJS6wCERGRnoOH/YeTx8uZSqwKF5bbLnWlbi2ZJjAt2gIuSZEpX0JIeQaxBkiFmLIAIk8EAQEASEGKQOCgCCQAQEhhgyQyANBQBAQYpAyIAgIAhkQEGLIAIk8EAQEASEGKQOCgCCQAQEhhgyQyANBQBAQYriJZYCm+5KjyVF0T2sC1HxJWhdA93TNylGYhMQETJ0yBUePHIXD4cg2TPr41DcTkhIx693pOHbkqG+qbXq/Rn5TfGqfAJUPI+HET/AgIMRwE2VRrXoNVKx0O1q2aonmLVogKjoaFW6riObNm6Nly5YoXrw4unV7/KopTHM4sGP7dnSIj8eo0aNx7MiRa5o2zBXYO5vw2NFj6NGtO4YMH47fjh2jWciAnjUpZZYwJjLdjY8XLES9enVx4n+/c1yKfDILI8+CDwEhhpskE6rUNapVwYH9+7BixWf4+quvQMuL69eri9WrV+OLL1Zj08aNsFpscHs1i/RJtVmtqFW7DoYPHQZan0H/eDEXeTRQqany05p+cmXLl8PA/v05DWlpaazB0KKwa3WUjmWfLsXSZUuxZ88v0J0ezUdmLV4rkjfXf66vlbi52Qver1stFtSrU4dbeE3TvN0InRcMWa1WTniFChXQrFkzOFxuRHqf+eeI1xdpFlhsVlb9rRYrV3QiB6NLk/1XwJatUIEJJiYmxv8z13RPeYnv2BGxsXmw5quvOT9EPpQm0hqEIK4Jzpvm+dqbhJuWVHN9mCr/8Oee50xR5aSKzMst/NZcUOv7RI8esNs8RKFUf2WbUJVfd3kUdX97BPXxlT/6CNswvDYL5Y+upLmQ83QdPPYOp9PJhEXPyQ/FTloL3auwKk4O7PefIproqCjPClO/vSmEFPyACvJb0RiCVEBUGYk8yJj48YIF+PKbb5AvNhb79u/HLbfcgvkLF4JWHfq7pOQktG7VEms3bETl2yvhheeeR/sOHTgOu92OlcuXcSt+7tw5bP1pGyreVgFvTJqMWnVqe6LJpOYumj8fa77+GgXy5sXPu3ahTOlSmPXe+8ifPx8vMff/vtybBwHRGIJYltTKu3Vg4DPPoG6tmpg5Zw7emvoW/vP55+jVu1eGlM+cNQudO3bElNcn4Nz5ixg0eDD2/vILE8yOHTvw4fx5mDL1LXy6dCl+PXyI7RBdunUFjUb4axcq4tTUFPQbNAj16tTGu7NnY+bMWVix8j8YPvxZ6C7XZXuGCiBX0yAgGkOQipIab+qv03EBw4cNw+Pdn+D+f+06dTnFf/31V4aUv/D8KDS+tynbGapUrYqHHn4YH8ydi7emTcOUKW8gOTERI4YM5XAUf8KlRBw9cgS7tu9AoyZNMsQXFRmF4UMGo2MXz8hIzVo1OU0njv9GiRN7QQbEzPNAiCGIZJlek2fbg8WCl8aOxbm//8IrY8fw9nE8/kCqhNcGoFk03m/S5XLyMwp37/3NULLkrTh95jQ/O3L0GLp0iMfTQ4ZyS6++RbHQPcem0/wDT7wUiO5eHPsyLl64gFdGj0aadwRDs1iz3bbv8v6Xl+PjhMh/IYGAdCWCSExqQxJl4KOr0+nCsWPH0KhxE7SL74Cx48bBolkQEREBh9OjzlNlpvab/FMlpysZH/Plyw+Lzc7dhKTkZBzYf4ArviIC5T8xOZnDudwuj5Zi9Ywg0LdP/v4/1K1bF23btcdr419jtKIiI/nbWVV54hcmGR5GDSKQJSmGEBBiMATTjfFEXQdW0XnTUzecLhcSLl1C+/btMW7MGNS4805OCFVoMkrarB51noYDqRLSsKXPaRZcvHgBRQrGwWK14tYSJbBzzx6On0YilMZw7tw/OHvmDGsHRDjklL3h4oXzeKTtI5jw2muoUaumR1vRdSQkJMBms/ri8H0zkxvfvIpM3smj4EVAiCFIZKNa39TUVE+F0yygCUyL5n+E/fv3o3a9ejy0SJWSugpEDGkOJ1JSU31qvTPNwZoCVcad27cjLc2BkS+M4vjurFYNO3ftwqABA0BdDppGneZIw8B+fZAnNpY1k5TUFPBZBV7NY8miRTh86DBohiZNmLpw/jxrFJGREWzHIE3jas5/SrQioav5lefBh4AQw02UiSIDasG3bd3KlfLQ4V9xxmsXoKQ1bnIPV8bHu3RB/z59MHHCBE7xho0b8czTg3Dq1CkUKVYMFSpWwMRJE7F92w6sX/sdRowcidnvTkex4sXZ/0uvjEO9unXx7w8/ROnSZXDXXfVRtmw53H9/MxSMi+O5Eps3beS5Bz9t+4nD3N2wEWw2G3r27IE+vXphyqTJsEdE4Ntvv8NTT/ZkomCP6f4jUti+fTvnZ8P69ayNqLym8yo/gxSBXD1wJkjznCvJ6t+7N8d7rbtEk9q+aP48bNnygy9d1FXo2rUbGjZpzN2AjevWYvHHn6BV61Zo0foRzJk5A78eOoxhzz2HErfcwhWPNIlPFizA7p07cVuliuj4+OMoXvyWK9R90i6WL1mCTZs2gSYgPdm7N6pWr87awNpv12LpksXe0QYNTe9tivhOnbDuu2+xdMmnaBcfj2YPPojZM2bg4L79GDn6RZ5PkV4boLTPeOcd7N27lzUe6g7dVa8enuzTh7soalanL7MGboiMHGlpBnyKl0AhIMQQICSvlRiUqu106bDSqIL3VFI1fVgZBl1unYcsqULRM3JU2SLsdl/KuTWmtRFkI9BpNqMLkRGX3/s8+t0QSZARkbQV6rKo0QiyR9AsR5fb7ZtxybMyVVidbB86vyNSS1/RKY3U1VFX8kNxkqO80btrdUIM14pYzv1fu5Ry/k2JgRDwToEmIx5VSjYgehdLUStM8xeoEtF7qlhUwYgQOKgXQUUu5J9GAbj11ixMCpmp7lTZyZF9gkiBKi+t2SBSotFPquRcea1WPseBToBS0645oE5Toj2kwGEzW7/hNZySHZXSwAZV75RqRX7e5MsliBGQeQwBEg4VeqpUhp1+ufWkis+V2xvYU6E8nK2eU6W1EFtoFti9ra5/pc3QEisNwi9B5IfIhKZH+7f2/IwJypMm+j5pDUpLUXHT9zLhAr8veOdEeEc3KO1MOnwqs9+IyRUhsv9B+SYioriY/LIPIj5yiIBoDDkEUAX3qMmeVY6qJVfvMrv6V2pV2LkieScc+Yfxvdeyrxj+fv3joHuO31tp/bsAKi2+q3edBoXxkUK6yNTzdI/5p8qHepeVX+XnalfWfPg/jw8iCHG5j4AQQ4AwJpWZWmGqFKRuiwsMAoyndzYm3Yu7MQhIVyJQOGsaPlo4Hx8tXOCxGQQqXomH7SAKBrFTKCRy9yqjEgHCl1RcUpnpSiMJag+FAEUf1tEQpmSg5UVl1zGqEdbgXWfmhRiuEzgJJgiYGQGxMZhZupI3QeA6ERBiuE7gJJggYGYEhBjMLF3JmyBwnQgIMVwncBJMEDAzAkIMZpau5E0QuE4E/h+gZUimw0LprgAAAABJRU5ErkJggg==)
Considere a velocidade da luz no vácuo: c = 3 × 108 m/s e a Constante de Planck: h = 6,6 × 10–34 J·s = 4,1 × 10–15 eV·s .
A linha Hβ (comprimento de onda de 486,1 nm) do espectro de emissão do átomo de hidrogênio corresponde a uma transição entre os níveis:
Considere a velocidade da luz no vácuo: c = 3 × 108 m/s e a Constante de Planck: h = 6,6 × 10–34 J·s = 4,1 × 10–15 eV·s .
A linha Hβ (comprimento de onda de 486,1 nm) do espectro de emissão do átomo de hidrogênio corresponde a uma transição entre os níveis: