Em aplicações modernas de Processamento de Linguagem Natural, usando Grandes Modelos de Linguagem (Large Language Models – LLM) é comum a necessidade de usar informações relevantes que estão em documentos novos e privados, que não foram usados no pré-treinamento dos modelos de LLM. Considerando que esses documentos podem ser longos e em grande quantidade, que o tamanho do contexto usado na chamada à Application Programming Interface (API) da LLM é limitado, e ainda pensando que os custos de processar são muitas vezes calculados por quantidade de tokens, foi desenvolvida a técnica conhecida como Retrieval Augmented Generation (RAG).
Considerando-se esse contexto, qual é a característica da técnica RAG?