O modelo de regressão logística é um caso particular de um modelo linear generalizado em que o componente aleatório tem distribuição Bernoulli e a função de ligação é a logito. Diante do exposto, marque V para as afirmativas verdadeiras e F para as falsas.

( ) Para uma variável explicativa numérica, o modelo logístico tem uma forma linear para o logito da probabilidade: , ou seja, p(x) aumenta ou diminui como uma função linear de x.
( ) A chance ou odds é a razão entre as probabilidades de sucesso e fracasso e pode ser expressa como eα (eß ) x . Quando a variável explicativa aumenta em uma unidade, a chance é aumentada multiplicativamente por ß.
( ) Para a avaliação do modelo de regressão com variáveis explicativas numéricas pode-se utilizar a estatística X2 de Pearson ou a estatística G2 do teste da razão de verossimilhança dadas, respectivamente, por:



( ) Para a análise de resíduos de um modelo de regressão logística com variáveis explicativas numéricas pode-se utilizar o resíduo de Pearson ou o resíduo ajustado de Pearson, dados, respectivamente, por:



( ) O modelo de regressão logística multicategorizada é uma generalização do modelo de regressão logística, onde a variável resposta assume mais de duas categorias. Quando as categorias são nominais, escolhe-se uma como sendo a base para se construir as chances e fazer as análises necessárias. No caso de categorias ordinais, a ordenação pode ser incorporada ao modelo na forma de probabilidades acumuladas, obtendo-se, então, o modelo logito acumulativo.

A sequência está correta em