Atenção: Para responder à questão considere um estudo com o objetivo de obter a relação entre duas variáveis X e Y por meio do modelo Yi = α + βXi + ∈i , em que i corresponde à i-ésima observação de X e Y. Os parâmetros α e β são desconhecidos e ∈i é o erro aleatório com as respectivas hipóteses consideradas para a regressão linear simples. Com base em 20 pares de observações (Xi , Yi ), i = 1, 2, ..., 20 e utilizando o método dos mínimos quadrados foram obtidas as estimativas para α e β.

Para testar a existência da regressão, a um determinado nível de significância, optou-se pelo teste t de Student, em que foram formuladas as hipóteses H0: β = 0 (hipótese nula) e H1: β ≠ 0 (hipótese alternativa). Sabendo-se que o coeficiente de explicação (R2), definido como sendo o resultado da divisão da variação explicada pela variação total, é igual a 62,5%, tem-se que o valor do t calculado ( tc ) utilizado para comparação com o respectivo t tabelado é tal que