Concurso:
TJ-BA
Disciplina:
Estatística
Considere uma variável aleatória do tipo contínua, cuja função de densidade de probabilidade é dada por:
fX (x) =( 1+ θ).xθ , se x ∈ (0,1) e zero caso contrário.
Sobre o momento ordinário de ordem k da distribuição de probabilidades, é possível afirmar que E ( Xk) é igual a:
fX (x) =( 1+ θ).xθ , se x ∈ (0,1) e zero caso contrário.
Sobre o momento ordinário de ordem k da distribuição de probabilidades, é possível afirmar que E ( Xk) é igual a: