Filtrar


Questões por página:

Um banco deseja fazer um estudo sobre o tempo que as pessoas levam para pagar o limite utilizado no cheque especial. O estatístico responsável acredita que esse tempo pode ser modelado por uma distribuição exponencial. Entretanto, antes de prosseguir com o trabalho, ele decide fazer algumas simulações.

Considerando essa situação, julgue o item subsequente.


O estimador de máxima verossimilhança para o parâmetro λ de uma distribuição exponencial é 1/ em que é a média dos dados.

Um banco deseja fazer um estudo sobre o tempo que as pessoas levam para pagar o limite utilizado no cheque especial. O estatístico responsável acredita que esse tempo pode ser modelado por uma distribuição exponencial. Entretanto, antes de prosseguir com o trabalho, ele decide fazer algumas simulações.

Considerando essa situação, julgue o item subsequente.

Uma forma de estimar a variância de um estimador é o método Jackknife. Dado o conjunto de dados A = {33, 14, 25, 40}, então todas as amostras Jackknife possíveis, com k=1, são as do conjunto J = {(14,25,40), (33,25,40), (33,14,40), (33,14,25)}.

Um banco deseja fazer um estudo sobre o tempo que as pessoas levam para pagar o limite utilizado no cheque especial. O estatístico responsável acredita que esse tempo pode ser modelado por uma distribuição exponencial. Entretanto, antes de prosseguir com o trabalho, ele decide fazer algumas simulações.

Considerando essa situação, julgue o item subsequente.


Para se gerar uma amostra bootstrap de tamanho 2 dos dados do conjunto A = {2, 3, 1, 5}, é suficiente retirar uma amostra sem reposição de A, sendo possíveis apenas as amostras do conjunto B = {(2,3), (2,1), (2,5), (3,1), (3,5), (1,5)}.

Um banco deseja fazer um estudo sobre o tempo que as pessoas levam para pagar o limite utilizado no cheque especial. O estatístico responsável acredita que esse tempo pode ser modelado por uma distribuição exponencial. Entretanto, antes de prosseguir com o trabalho, ele decide fazer algumas simulações.

Considerando essa situação, julgue o item subsequente.


Para gerar números aleatórios de uma distribuição exponencial, de parâmetro λ, é suficiente substituir qualquer número entre 0 e 1 pelo valor de p na função z = -ln(1-p)/λ.

mostrar texto associado

Se a distribuição conjunta de X e Y é dada conforme a tabela I a seguir, então a distribuição condicional de X, dado Y=1, é dada pela tabela II.