Filtrar


Questões por página:

Sejam X, Y, W e Z variáveis aleatórias todas com distribuição normal-padrão, com X independente de Y e Y independente de Z. Já W é independente das demais.


Sobre algumas combinações dessas variáveis, é correto afirmar que:

O tempo para a tramitação de certo tipo de procedimento aberto pelo Ministério Público, em um dado instante, é uma variável aleatória com distribuição normal, tendo média igual de 10 meses e desvio-padrão de 3 meses. Um novo grupo de procuradores, recém-chegados à instituição, deve cuidar de alguns procedimentos, que serão sorteados dentre os que já têm mais de 7 meses de duração.


Sobre a função acumulada da normal são dados os valores:


Ø(1) = 0,80, Ø(1,5) = 0,92 e Ø(2,0) = 0,98


Com tais informações, a probabilidade de que um procedimento com mais de 16 meses seja selecionado é igual a:

Para duas variáveis aleatórias estão disponíveis as seguintes informações estatísticas:


Cov (Y, Z) = 18, E(Z) = 4, Var(Z) = 25, E(Y) = 4 e CV(Y) = 2.


Onde CV é o coeficiente de variação, além da nomenclatura usual.


Então a expressão E(Z2) + Var(2Y - 3Z) vale:

A probabilidade de que uma decisão de 1ª instância da Justiça Federal do Paraná seja reformada pelo Tribunal Superior da 4ª Região é de 0,20. No momento 100 recursos aguardam por uma decisão dos Srs. Desembargadores daquele Tribunal.


São informados alguns valores da distribuição acumulada da normal-padrão:


Ø(1 ) = 0,87, Ø(1,28)=0,90 e Ø(2) = 98


Sem usar o ajuste de continuidade, a probabilidade de que mais de 24 decisões sejam reformadas é:

Suponha que o número de denúncias oferecidas por mês (30 dias) pelo Ministério Público seja uma variável aleatória discreta com distribuição de Poisson, com parâmetro λ = 12.


Se até o 10º dia de certo mês já tenham sido oferecidas três denúncias, a probabilidade de que até o final do mês (+20 dias) se tenham acumulado exatamente seis denúncias é igual a: