Filtrar


Questões por página:
O número de recursos em um processo é uma variável aleatória de Poisson com parâmetro λ = 5. Então a probabilidade de que um processo tenha menos do que 2 recursos é:
Sabe-se que o tempo de duração de um processo na justiça do trabalho é uma variável aleatória contínua distribuída exponencialmente, com média de 1200 dias. Se já passaram 900 dias de um processo, a probabilidade de que ele dure mais do que 1500 dias é igual a:
Considere a variável aleatória X, uniforme entre 0 e 1, uma amostra aleatória simples de tamanho n=3 e a estatística de ordem do máximo (=Y). Então a função de densidade de Y é dada por:
Suponha que o número de advogados atendidos por um diretor de vara, por dia, é uma variável aleatória distribuída uniformemente entre 11 e 25, inclusive. Então, se em um dia qualquer, até certo horário, 18 advogados foram atendidos, a probabilidade de que mais de 23 sejam atendidos naquele dia é:
Numa localidade que conta apenas com duas varas de justiça e onde os processos são distribuídos de forma aleatória, sabe-se que o juiz “A” condena os réus com probabilidade de 0,45 e o juiz “B” absolve com probabilidade 0,85. Logo, a probabilidade de que um réu qualquer seja absolvido é de: