Filtrar


Questões por página:

De uma população infinita X, com distribuição normal, com média µ e variância 9, extraiu-se, aleatoriamente, a seguinte amostra de 4 elementos: {x: 1,2; 3,4; 0,6; 5,6}. Com base no estimador de máxima verossimilhança de µ, para um grau de significância de α, estimou-se o intervalo de confiança para a média em [-0,24; 5,64]. Da mesma população, extraiu-se uma amostra 100 vezes maior que a anterior e verificou-se que, para essa nova amostra, a estimativa da média amostral era igual à obtida com a primeira amostra. Com o mesmo grau de significância α, o intervalo de confiança estimado, com base na nova amostra, foi

Se X é uma variável aleatória descrita por uma função conjunto de probabilidades PX(.), a função de distribuição de probabilidade de X, F(x) terá, entre outras, as seguintes propriedades:

I - F(x) é monotônica não decrescente;
II - limx→∞ F(x) = 0 e limx→∞ F(x) = 0;
III - F(x) é contínua à direita.

É(São) correta(s) a(s) propriedade(s)

.Sobre variáveis aleatórias, considere as afirmações a seguir.

I - Para toda e qualquer variável aleatória, sua função de densidade de probabilidade fornece a probabilidade de ocorrência de cada valor da variável aleatória considerada, exceto no caso de variáveis aleatórias contínuas, para as quais a probabilidade de ocorrência de um valor específico é zero.

II - A esperança matemática (expectância) de uma variável aleatória discreta, ou seja, seu valor esperado, é a média dessa variável aleatória, que é definida como um navos do somatório dos valores possíveis dessa variável multiplicados por suas respectivas probabilidades.

III - A distribuição binomial é uma extensão direta da Distribuição de Bernoulli, uma vez que o experimento aleatório que caracteriza a binomial nada mais é do que um Experimento de Bernoulli repetido n vezes.

É correto APENAS o que se afirma em

Se X e Y são duas variáveis aleatórias, para as quais são definidas: E(X) e E(Y), suas esperanças matemáticas (expectâncias); Var(X) e Var(Y), suas respectivas variâncias, e Cov(X, Y), a covariância entre X e Y, quaisquer que sejam as distribuições de X e Y, tem-se que

Sobre séries temporais, analise as proposições a seguir.

I - Se um processo MA(1) for estacionário, ele pode ser representado como um processo autorregressivo (AR) de ordem infinita.

II - Se um processo AR(1) for estacionário, ele pode ser representado por um processo de médias móveis (MA) de ordem infinita.

III - Uma série de tempo é um conjunto ordenado de variáveis aleatórias, isto é, um processo estocástico, portanto uma série de tempo y(t) pode ser representada pela função de densidade conjunta dos yt (t = 1, 2, ... n); assim, trabalhar com uma série de tempo é inferir sobre o processo estocástico com uma única realização desse processo.

É(São) correta(s) a(s) proposição(ões)