Questões de Concurso
Filtrar
3.474 Questões de concurso encontradas
Página 7 de 695
Questões por página:
A Razão das Chances é definida pela razão entre a probabilidade de sucesso e a probabilidade de insucesso, ou seja, p/1–p. Então, assumindo y = β0 + β1X1 + ... + βp-1Xp-1 = X' β , tem-se no Modelo Logístico p = p(X) = p(X1, X2, ..., Xp-1) = ey/ey+1 = 1/1+e-y= 1/1+e-x'β. Portanto, a Razão das Chances no Modelo Logístico é
O estatístico que trata da análise de dados referentes à Justiça Federal necessita conduzir um estudo que requer informações sobre determinada característica quantitativa, X, dos processados em determinada Vara Federal. Um dos objetivos é construir um intervalo de 95% de confiança para o valor médio da característica quantitativa do grupo de processados, com erro de amostragem ou precisão de 0,5 σ, meio desvio-padrão. Ele tomou, então, uma amostra aleatória piloto de tamanho n0 = 5 que forneceu as seguintes estatísticas amostrais, média e variância, para a característica: x̄0 = 127,6 e S = 1290,8. A respeito das informações anteriores, sabe-se que é possível assumir o modelo de distribuição normal para a característica quantitativa do grupo de processados, que é finito com N = 2000 indivíduos e com variância desconhecida. Assim, conhecendo o escore da distribuição t de t4 (0,975) = 2,78, é correto afirmar que o tamanho definitivo da amostra n é
O estatístico de uma Vara Federal necessita verificar se a idade média dos condenados por prevaricação e a dos condenados por corrupção passiva são iguais. Para isso tomou amostras aleatórias de tamanhos: n1 = 15 de condenados por prevaricação e n2 = 20 condenados por corrupção passiva. As amostras forneceram as estatísticas: média amostral x̄1 = 25 anos e desvio-padrão amostral s1 = 2 anos do grupo da prevaricação e x̄2 = 31 anos e desvio-padrão amostral s2 = 3,5 anos do grupo da corrupção passiva. Verificou-se, aplicando os testes, que as amostras eram provenientes de distribuição normal, mas com variâncias desconhecidas e diferentes. Então, foi aplicado o teste adequado à situação e obteve-se, para a estatística do teste, o valor
Seja a amostra aleatória de variável aleatória X que tem distribuição normal com média μ e variância σ2, N(μ, σ2), [x1, x2, ..., xn], então, é correto afirmar que a Variância e o Erro Quadrático Médio do estimador de Máxima Verossimilhança (EMV) do parâmetro σ2 são, respectivamente,