limpar filtros
Questões por página:

Um estudo corresponde ao interesse de analisar o desempenho de 3 postos independentes de atendimento ao público com 8 funcionários cada um. Decidiu-se empregar a análise de variância com o objetivo de testar a hipótese de igualdade das médias de atendimento dos 3 postos (quantidade de pessoas atendidas por mês). Durante um mês, anotou-se para cada funcionário dos postos a quantidade de pessoas atendidas. Denominando os postos por Grupo 1, Grupo 2 e Grupo 3 obteve-se pelo quadro de análise de variância o valor da estatística Fc (F calculado) igual a 2, para posteriormente comparar com o F tabelado (variável F de Snedecor). A porcentagem que a “variação entre os grupos” representa da “variação total” no quadro de análise de variância é igual a

Em um modelo de regressão linear múltipla envolvendo a variável dependente e 4 variáveis explicativas, obtiveram-se as estimativas dos respectivos parâmetros utilizando o método dos mínimos quadrados. O número de observações para a dedução da correspondente equação foi de 20. Construindo o quadro de análise de variância, com o objetivo de testar a existência da regressão, tem-se para utilização da estatística F de Snedecor os graus de liberdade no numerador e no denominador com, respectivamente,
mostrar texto associado
A variação explicada pelo modelo de regressão apresenta o valor de
mostrar texto associado
Utilizando a equação da reta obtida pelo método dos mínimos quadrados, obtém-se que o valor da previsão de Y para X = 7 é igual a

Um setor de um órgão público é composto por 80 funcionários, sendo 40 homens e 40 mulheres. Três tipos de processos (M, N e P) são analisados pelos funcionários deste setor. Uma pesquisa é realizada com todos estes funcionários perguntando qual tipo de processo prefere analisar. Cada um deu uma e somente uma resposta entre as opções M, N e P resultando no seguinte quadro:



Utilizou-se o teste qui-quadrado para concluir se a preferência pelos tipos de processos depende do sexo.

Dados: Valores críticos da distribuição qui-quadrado [P (qui-quadrado com n graus de liberdade < valor tabelado) = (1 - a)]



Pode-se afirmar que uma conclusão correta é que