Filtrar


Questões por página:

Considere que os salários de todos os 530 empregados de uma empresa sejam normalmente distribuídos com uma média µ e um desvio padrão populacional igual a R$ 149,50. Uma amostra aleatória de 169 destes salários (sem reposição) apresentou uma média de X reais. Com base no resultado da amostra, deseja-se testar a hipótese, ao nível de significância de 5%, se µ é superior a R$ 2.000,00 sendo formuladas as hipóteses H0: µ = R$ 2.000,00 (hipótese nula) e H1:µ > R$ 2.000,00 (hipótese alternativa). Sabe-se que H0 não foi rejeitada considerando a informação da distribuição normal padrão (Z) que a probabilidade P (z > 1,64) = 0,05. O valor de X é, no máximo,

A função densidade de uma população X é dada por



Com base em uma amostra aleatória de 5 elementos {x1, x2, x3, x4, x5} desta população, em que ln (x1. x2. x3. x4. x5) = - 4 (observação: ln é o logaritmo neperiano), tem-se que pelo método da máxima verossimilhança o valor da estimativa de a é

Considere uma amostra aleatória de tamanho 4: (X, Y, Z, T) extraída de uma população normal de média µ e variância unitária. A classe de estimadores E = (K - 2) X - KY + (2 - K) Z + (K + 1) T é utilizada para estimar a média µ da população, sendo K um parâmetro real. Entre os estimadores desta classe, o mais eficiente apresenta uma variância igual a

Os estimadores  são 2 estimadores justos utilizados para a média µ de uma população normal. (X1, X2, X3) corresponde a uma amostra aleatória de tamanho 3 desta população e m e n são parâmetros pertencentes aos números reais. O valor de (m + n) é igual a

Uma amostra aleatória de 9 elementos foi extraída de uma população normal de tamanho infinito com média µ e variância desconhecida. O desvio padrão da amostra apresentou o valor de 1,25 e o intervalo de confiança de (1 - a) para µ: [14, 16] fo obtido com base nesta amostra. Sabe-se que para obtenção deste intervalo utilizou-se a distribuição t de Student com os correspondentes graus de liberdade, em que a probabilidade P (- T= t = T) = (1 - a). Se T > 0, então o valor de T é