Questões de Concurso
Filtrar
1.262 Questões de concurso encontradas
Página 89 de 253
Questões por página:
Para estimar, por máxima verossimilhança (MV) ou pelo método dos momentos (MM), o único parâmetro de dada distribuição de probabilidades, seleciona-se uma amostra de tamanho n.
A função densidade da distribuição é:
fx(x) = θxθ-1 , para 0 < x < 1 e zero caso contrário.Além disso, considere:
Então, os estimadores de MV e de MM (com base na média da distribuição) para θ são, respectivamente:
A distribuição das alturas dos indivíduos de uma população é aproximadamente Normal, com média 1,70 m e variância 0,01. Adicionalmente, não havendo, na população, pessoas com alturas inferiores a 1,50 m nem superiores a 1,90 m, essa distribuição é truncada nos extremos.
São fornecidas também as seguintes informações:
ɸ (1)≅ 0,84 e ɸ (2) ≅ 0,98
ɸ (z) = função distribuição acumulada da Normal Padrão
Então a probabilidade de que um indivíduo da população, sorteado ao acaso, tenha altura entre 1,60 m e 1,80 m é:
Suponha que uma amostra de tamanho n = 5 é extraída de umapopulação Normal, com média desconhecida, obtendo asseguintes observações:
X1 = 2, X2 = 5, X3 = 6, X4 = 9 e X5 = 12
São dados ainda os seguintes valores, retirados da tabela da distribuição Qui-Quadrado:
Se a população tem variância verdadeira σ2 = 4 em nova amostra (n=5), a probabilidade de se observar uma variância amostral maior do que a anterior é de: