limpar filtros
Questões por página:
Os 10 elementos de uma amostra aleatória correspondentes a uma variável aleatória X apresentaram valores diferentes e foram colocados em ordem crescente. O intervalo de confiança [m,n], em que m é o segundo elemento deste conjunto e n o nono elemento, é um intervalo de confiança da mediana de X. O nível de confiança deste intervalo é de

Deseja-se testar a hipótese se a altura média μx dos trabalhadores de um determinado ramo de atividade X é igual à altura média µy dos trabalhadores de outro ramo de atividade Y, aos níveis de 1% e 5%. Para isto, considerou-se que as alturas dos trabalhadores de X e Y são normalmente distribuídas com as populações de tamanho infinito. O desvio padrão da população X é igual a 3 cm e o desvio padrão de Y igual a 4 cm. Uma amostra aleatória de 2.500 trabalhadores de X e uma amostra aleatória de 2.500 trabalhadores de Y forneceu as médias de 160,0 cm e 159,8 cm, respectivamente. As hipóteses formuladas foram H0: μx − μy = 0 (hipótese nula) contra H1: μx − μy ≠ 0 (hipótese alternativa). Utilizando as informações da distribuição normal padrão Z de que as probabilidades P(Z>1,96) = 0,025 e P(Z>2,58) = 0,005, é correto afirmar que H0

X
H0

Seja uma amostra aleatória de 25 peças fabricadas por uma indústria em que a soma das medidas dos diâmetros da peça apresentou o valor de 125 cm e a soma dos quadrados das medidas dos diâmetros apresentou o valor de 649 (cm) 2. Considere que as medidas dos diâmetros são normalmente distribuídas com uma variância populacional desconhecida e com uma população de tamanho infinito. Deseja-se testar a hipótese de que a média (µ) da população destas medidas é igual a 5,5 cm, sendo formuladas as hipóteses H0: μ = 5,5 cm (hipótese nula) contra H1: μ ≠ 5,5 cm (hipótese alternativa). Utilizando o teste t de Student, obtém-se que o valor da estatística t (t calculado) a ser comparado com o t tabelado, com 24 graus de liberdade, é

Em uma empresa com 1.025 funcionários, verifica-se que os salários de seus empregados apresentam uma distribuição normal com um desvio padrão de R$ 160,00. Selecionando aleatoriamente, sem reposição, 400 destes funcionários, obteve-se um intervalo de confiança de 95% para a média da população dos salários. Considerando na curva normal padrão Z a probabilidade P(Z > 1,96) = 0,025, a amplitude deste intervalo é igual a
Uma pesquisa realizada com 8.400 habitantes de uma cidade, escolhidos aleatoriamente, revelou que 70% deles estavam satisfeitos com o desempenho do prefeito. Considere que é normal a distribuição amostral da frequência relativa dos habitantes satisfeitos com o desempenho do prefeito e que, na curva normal padrão Z, a probabilidade P(Z>1,96) = 0,025. Considerando a cidade com uma população de tamanho infinito, o intervalo de confiança para esta proporção ao nível de confiança de 95%, com base no resultado da amostra, é