Filtrar

Cargo:

Escolaridade:

Ano:

Banca Organizadora:

Instituição:

Modalidade:

Disciplina:

Estatística

Assunto:

Distribuição qui-quadrado

Questões por página:
Dois grupos independentes (G1 e G2) são formados por trabalhadores de uma cidade. G1 é composto por uma amostra aleatória, com reposição, de 100 empregados da empresa E1 e G2 por uma amostra aleatória, com reposição, de 60 empregados de uma outra empresa E2. Deseja-se testar a hipótese, utilizando a distribuição qui-quadrado, se as medianas dos salários dos empregados de G1 e G2 são iguais ao nível de significância de 5%. Foram formuladas então as hipóteses H0: As medianas de G1 e G2 são iguais (hipótese nula) e H1: As medianas de G1 e G2 são diferentes (hipótese alternativa).
A tabela abaixo apresenta o resultado de um levantamento realizado com relação à mediana (Md) dos salários do grupo combinado (das duas amostras juntas).


Dados: Valores críticos (c) da tabela da distribuição qui-quadrado com n graus de liberdade para α = 0,05, tal que a probabilidade P(qui-quadrado > c) = 0,05.


A conclusão do teste é que H0

Acredita-se que a variância (σ2) de uma população, normalmente distribuída e de tamanho infinito, seja igual a 3,6. Para verificar se esta variância é inferior a 3,6, a um nível de significância α, foram formuladas as hipóteses H0: σ2 = 3,6 (hipótese nula) e H1: σ2 < 3,6 (hipótese alternativa) utilizando o teste qui-quadrado. Uma amostra aleatória de tamanho 10 foi extraída da população obtendo-se uma variância amostral igual a 1,5.

Dados:

Valores críticos qui-quadrado



A conclusão é que ao nível de significância de

Espera-se que o número de reclamações tributárias em um órgão público durante determinada semana seja igual a 25, em qualquer dia útil. Sabe-se que nesta semana ocorreram 125 reclamações com a seguinte distribuição por dia da semana:



Para decidir se o número de reclamações tributárias correspondente não depende do dia da semana, a um nível de significância α, é calculado o valor do qui-quadrado (x²) que se deve comparar com o valor do qui-quadrado crítico tabelado com 4 graus de liberdade. O valor de x² é