Filtrar


Questões por página:
Uma variável aleatória X é normalmente distribuída com média µ, variância populacional igual a 576 e com uma população considerada de tamanho infinito. Por meio de uma amostra aleatória de tamanho 100, obteve-se um intervalo de confiança de (1 - a) para µ igual a [105,8 ; 114,2]. Uma outra amostra aleatória de tamanho 225, independente da primeira, forneceu uma média amostral igual a 108. Então, o intervalo de confiança de (1 - a) correspondente a esta outra amostra é igual a
Deseja-se obter uma estimativa pontual do parâmetro p da distribuição geométrica P(X = x) = (1 - p) x - 1 p (x = 1, 2, 3, . . . ) sabendo-se que o acontecimento cuja probabilidade é p ocorreu em 5 experiências, pela primeira vez na primeira, terceira, segunda, quarta e segunda, respectivamente. Utilizando o método dos momentos, encontra-se que o valor desta estimativa é

Em um conjunto de 100 experiências, consistindo em 5 provas cada uma, verificou-se se o evento A ocorre em cada prova. Seja a distribuição abaixo referente a estas experiências:



Observação: ni é o número de experiências nas quais o evento A ocorreu xi vezes.

Admitindo que a ocorrência do evento A em cada experiência obedece a uma distribuição binomial, ou seja,  encontra-se, pelo método da máxima verossimilhança, que uma estimativa pontual do parâmetro p é

Considere uma amostra aleatória (X, Y, Z), com reposição, extraída de uma população normal com média µ e variância 1. Considere também os 3 estimadores não viesados de µ , com m, n e p sendo parâmetros reais:

E1 = mX − 2nY − pZ
E2 = 2mX + nY − 4pZ
E3 = mX − 8nY + pZ

Entre os 3 estimadores, o mais eficiente apresenta uma variância igual a

Uma variável aleatória X tem média igual a m e desvio padrão igual a 0,25. Pelo teorema de Tchebyschev, a probabilidade mínima de que X pertença ao intervalo (m - K , m + K) é igual a 93,75%. O valor de K é