Filtrar


Questões por página:
As variáveis aleatórias X e Y representam a altura (em centímetros) dos habitantes de uma cidade e o peso (em quilos) dos habitantes de uma outra cidade, respectivamente. Considera-se que as correspondentes populações de X e Y são normalmente distribuídas e de tamanho infinito. Uma amostra aleatória de tamanho 100 da população de X forneceu um intervalo de confiança, ao nível de confiança de 88%, para a média (μX), em cm, igual a [156,1 ; 163,9], sabendo-se que a variância populacional de X é igual a 625 cm2. Uma amostra aleatória de tamanho 400 da população de Y forneceu um intervalo de confiança, ao nível de confiança de 88%, para a média (μY), em kg, igual a [68,83 ; 71,17]. A variância populacional de Y, em kg2 , é igual a
Suponha que uma variável aleatória X é uniformemente distribuída no intervalo (a , b), em que nem a nem b são conhecidos. Utilizando o método dos momentos, com base em uma amostra de tamanho 10, obtiveram-se os valores 1 e 4 para a e b, respectivamente. O valor do momento de ordem 2, centrado na origem, correspondente aos elementos da amostra é
Em um estudo é considerada a distribuição binomial Pm(x) =  Cmx px(1 − p)m−x, em que x é o número de ocorrências de um acontecimento em m provas, sabendo-se que na i-ésima experiência de uma série de n, comportando m provas cada uma, o acontecimento ocorreu xi vezes. Deseja-se encontrar, pelo método da máxima verossimilhança, a estimativa pontual do parâmetro p com a qual um acontecimento A ocorre em cada prova, sabendo-se que em 80 experiências de 5 provas cada uma forneceram a distribuição abaixo.

                                                xi       0   1    2    3   4     5   Total
                                                ni       2   8   20  25  20   5      80 
Observação: ni é o número de experiências nas quais o acontecimento A ocorreu xi vezes. 
 

O valor da estimativa de p é então, em %, igual a
Os estimadores não viesados E1 = mX - mY + Z e E2 = (m - 12)X - mY + 13Z, em que m é um parâmetro real, são utilizados para a obtenção da média μ de uma população normal com variância unitária. (X, Y, Z) é uma amostra aleatória extraída desta população, com reposição. Considerando o maior valor inteiro m tal que E1 é mais eficiente que E2, tem-se que a variância de E1 é igual a
A média de uma variável aleatória contínua X, em que se desconhece sua distribuição, é igual a 10,4. Pelo teorema de Tchebichev obteve-se um intervalo igual a (7,4 ; 13,4) em que a probabilidade mínima de X pertencer a este intervalo é igual a 84%. O valor da variância (σ 2) da variável X é tal que